Skip to main content

Constructing Two-Dimensional Voronoi Diagrams via Divide-and-Conquer of Envelopes in Space

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 6290))

Abstract

We present a general framework for computing Voronoi diagrams of different classes of sites under various distance functions in \({\mathbb R}^{2}\). Most diagrams mentioned in the paper are in the plane. However, the framework is sufficiently general to support diagrams embedded on a family of two-dimensional parametric surfaces in three-dimensions. The computation of the diagrams is carried out through the construction of envelopes of surfaces in 3-space provided by Cgal (the Computational Geometry Algorithm Library). The construction of the envelopes follows a divide-and-conquer approach. A straightforward application of the divide-and-conquer approach for Voronoi diagrams yields algorithms that are inefficient in the worst case. We prove that through randomization, the expected running time becomes near-optimal in the worst case. We also show how to apply the new framework and other existing tools from Cgal to compute minimum-width annuli of sets of disks, which requires the computation of two Voronoi diagrams of different types, and of the overlay of the two diagrams. We do not assume general position. Namely, we handle degenerate input, and produce exact results.

Work on this paper has been supported in part by the Hermann Minkowski–Minerva Center for Geometry at Tel-Aviv University. Work by Ophir Setter and Dan Halperin has also been supported in part by the Israel Science Foundation (Grant no. 236/06), and by the German-Israeli Foundation (Grant no. 969/07). Work by Micha Sharir was also partially supported by NSF Grants CCF-05-14079 and CCF-08-30272, by Grant 2006/194 from the U.S.-Israeli Binational Science Foundation, by Grants 155/05 and 338/09 from the Israel Science Fund, Israeli Academy of Sciences, and by a grant from the French-Israeli AFIRST program.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shamos, M.I., Hoey, D.: Closest-point problems. In: Proceedings of the 16th IEEE Symposium on the Foundations of Computer Science, pp. 151–162 (1975)

    Google Scholar 

  2. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd edn. John Wiley & Sons, NYC (2000)

    MATH  Google Scholar 

  3. Aurenhammer, F., Klein, R.: Voronoi diagrams. In: Sack, J.R., Urrutia, J.B. (eds.) Handbook of Computational Geometry, pp. 201–290. Elsevier Science Publishers B.V., North-Holland (2000)

    Google Scholar 

  4. Boissonnat, J.D., Wormser, C., Yvinec, M.: Curved Voronoi diagrams. In: Boissonnat, J.D., Teillaud, M. (eds.) Effective Computational Geometry for Curves and Surfaces. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Barequet, G., Dickerson, M.T., Drysdale, R.L.S.: 2-point site Voronoi diagrams. Discrete Applied Mathematics 122(1-3), 37–54 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Klein, R.: Concrete and Abstract Voronoi Diagrams. LNCS, vol. 400. Springer, Heidelberg (1989)

    MATH  Google Scholar 

  7. Fortune, S.J.: A sweepline algorithm for Voronoi diagrams. Algorithmica 2(1-4), 153–174 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  8. Guibas, L.J., Knuth, D.E., Sharir, M.: Randomized incremental construction of Delaunay and Voronoi diagrams. Algorithmica 7(1-6), 381–413 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Klein, R., Mehlhorn, K., Meiser, S.: Randomized incremental construction of abstract Voronoi diagrams. Computational Geometry: Theory and Applications 3(3), 157–184 (1993)

    MATH  MathSciNet  Google Scholar 

  10. Karavelas, M.I., Yvinec, M.: The Voronoi diagram of planar convex objects. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 337–348. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Aichholzer, O., Aigner, W., Aurenhammer, F., Hackl, T., Jüttler, B., Pilgerstorfer, E., Rabl, M.: Divide-and-conquer for Voronoi diagrams revisited. In: Proceedings of the 25th Annual ACM Symposium on Computational Geometry (SoCG), pp. 189–197. Association for Computing Machinery (ACM) Press, New York (2009)

    Chapter  Google Scholar 

  12. Boissonnat, J.D., Devillers, O., Pion, S., Teillaud, M., Yvinec, M.: Triangulations in CGAL. Computational Geometry: Theory and Applications 22(1-3), 5–19 (2002)

    MATH  MathSciNet  Google Scholar 

  13. Emiris, I.Z., Karavelas, M.I.: The predicates of the Apollonius diagram: Algorithmic analysis and implementation. Computational Geometry: Theory and Applications 33(1-2), 18–57 (2006)

    MATH  MathSciNet  Google Scholar 

  14. Karavelas, M.I.: A robust and efficient implementation for the segment Voronoi diagram. In: Proceedings of the 1st International Symposium on Voronoi Diagrams in Science and Engineering (ISVD), pp. 51–62 (2004)

    Google Scholar 

  15. Emiris, I.Z., Tsigaridas, E.P., Tzoumas, G.: Voronoi diagram of ellipses in CGAL. In: Abstracts of the 24th European Workshop on Computational Geometry, pp. 87–90 (2008)

    Google Scholar 

  16. Burnikel, C., Mehlhorn, K., Schirra, S.: How to compute the Voronoi diagram of line segments: Theoretical and experimental results. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 227–239. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  17. Held, M.: VRONI: An engineering approach to the reliable and efficient computation of Voronoi diagrams of points and line segments. Computational Geometry: Theory and Applications 18(2), 95–123 (2001)

    MATH  MathSciNet  Google Scholar 

  18. Hoff III, K.E., Keyser, J., Lin, M., Manocha, D., Culver, T.: Fast computation of generalized Voronoi diagrams using graphics hardware. In: Proceedings of the 26th Annual International Conference on Computer Graphics and Interactive Techniques, pp. 277–286. Association for Computing Machinery (ACM) Press, New York (1999)

    Google Scholar 

  19. Nielsen, F.: An interactive tour of Voronoi diagrams on the GPU. In: ShaderX6: Advanced Rendering Techniques. Charles River Media, Hingham (2008)

    Google Scholar 

  20. Edelsbrunner, H., Seidel, R.: Voronoi diagrams and arrangements. Discrete & Computational Geometry 1(1), 25–44 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  21. Meyerovitch, M.: Robust, generic and efficient construction of envelopes of surfaces in three-dimensional space. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 792–803. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Meyerovitch, M., Wein, R., Zukerman, B.: 3D Envelopes. In: CGAL Editorial Board (ed.) CGAL User and Reference Manual, 3.4th edn. (2008)

    Google Scholar 

  23. Agarwal, P.K., Schwarzkopf, O., Sharir, M.: The overlay of lower envelopes and its applications. Discrete & Computational Geometry 15(1), 1–13 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Setter, O.: Constructing two-dimensional Voronoi diagrams via divide-and-conquer of envelopes in space. M.Sc. thesis, The Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel (May 2009), Electronic version can be found at http://arxiv.org/abs/0906.2760

  25. Berberich, E., Fogel, E., Halperin, D., Mehlhorn, K., Wein, R.: Arrangements on parametric surfaces I: General framework and infrastructure (2010); Accepted for publication in Mathematics in Computer Science

    Google Scholar 

  26. Ebara, H., Fukuyama, N., Nakano, H., Nakanishi, Y.: Roundness algorithms using the Voronoi diagrams. In: Abstracts of the 1st Canadian Conference on Computational Geometry, p. 41 (1989)

    Google Scholar 

  27. Eigenwillig, A., Kerber, M.: Exact and efficient 2D-arrangements of arbitrary algebraic curves. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 122–131. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2008)

    Google Scholar 

  28. Berberich, E., Emeliyanenko, P.: Cgal’s curved kernel via analysis. ACS Technical Report ACS-TR-123203-04, MPI (2008)

    Google Scholar 

  29. Sugihara, K.: Laguerre Voronoi diagram on the sphere. Journal for Geometry and Graphics 6(1), 69–81 (2002)

    MATH  MathSciNet  Google Scholar 

  30. Aurenhammer, F., Edelsbrunner, H.: An optimal algorithm for constructing the weighted Voronoi diagram in the plane. Pattern Recognition 17(2), 251–257 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  31. Yap, C.K., Dubé, T.: The exact computation paradigm. In: Du, D.Z., Hwang, F.K. (eds.) Computing in Euclidean Geometry, 2nd edn. LNCS, vol. 1, pp. 452–492. World Scientific, Singapore (1995)

    Google Scholar 

  32. Austern, M.H.: Generic Programming and the STL. Addison-Wesley, Reading (1999)

    Google Scholar 

  33. Wein, R., Fogel, E., Zukerman, B., Halperin, D.: 2D arrangements. In: CGAL Editorial Board (ed.) CGAL User and Reference Manual, 3.4th edn. (2008)

    Google Scholar 

  34. Sharir, M.: The Clarkson-Shor technique revisited and extended. Combinatorics, Probability & Computing 12(2) (2003)

    Google Scholar 

  35. Guibas, L.J., Seidel, R.: Computing convolutions by reciprocal search. Discrete & Computational Geometry 2(1), 175–193 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  36. Berberich, E., Fogel, E., Halperin, D., Kerber, M., Setter, O.: Arrangements on parametric surfaces II: Concretization and applications (2010); Accepted for publication in Mathematics in Computer Science

    Google Scholar 

  37. Fogel, E., Setter, O., Halperin, D.: Movie: Arrangements of geodesic arcs on the sphere. In: Proceedings of the 24th Annual ACM Symposium on Computational Geometry (SoCG), pp. 218–219. Association for Computing Machinery (ACM) Press, New York (2008)

    Google Scholar 

  38. Knuth, D.E.: Art of Computer Programming, 2nd edn. Sorting and Searching, vol. 3. Addison-Wesley, Reading (April 1998)

    Google Scholar 

  39. Baccelli, F., Gloaguen, C., Zuyev, S.: Superposition of planar Voronoi tessellations. Stochastic Models 16, 69–98 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  40. Rivlin, T.J.: Approximating by circles. Computing 21, 93–104 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  41. Mehlhorn, K., Meiser, S., Rasch, R.: Furthest site abstract Voronoi diagrams. International Journal of Computational Geometry and Applications 11(6), 583–616 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  42. Bose, P., Devroye, L.: Intersections with random geometric objects. Computational Geometry: Theory and Applications 10(3), 139–154 (1998)

    MATH  MathSciNet  Google Scholar 

  43. Nielsen, F., Boissonnat, J.D., Nock, R.: On Bregman Voronoi diagrams. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 746–755. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2007)

    Google Scholar 

  44. Onishi, K., Takayama, N.: Construction of Voronoi diagram on the upper half-plane. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 79(4), 533–539 (1996)

    Google Scholar 

  45. Nilforoushan, Z., Mohades, A.: Hyperbolic Voronoi diagram. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3984, pp. 735–742. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  46. Stroustrup, B.: The C++ Programming Language, 3rd edn. Addison-Wesley, Boston (1997)

    Google Scholar 

  47. Myers, N.: “Traits”: A new and useful template technique. In: Lippman, S.B. (ed.) C++ Gems. SIGS Reference Library, vol. 5, pp. 451–458 (1997)

    Google Scholar 

  48. Berberich, E., Kerber, M.: Exact arrangements on tori and Dupin cyclides. In: Proceedings of the 2008 ACM Symposium on Solid and Physical Modeling (SPM), pp. 59–66. Association for Computing Machinery (ACM) Press, New York (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Setter, O., Sharir, M., Halperin, D. (2010). Constructing Two-Dimensional Voronoi Diagrams via Divide-and-Conquer of Envelopes in Space. In: Gavrilova, M.L., Tan, C.J.K., Anton, F. (eds) Transactions on Computational Science IX. Lecture Notes in Computer Science, vol 6290. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16007-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16007-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16006-6

  • Online ISBN: 978-3-642-16007-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics