Skip to main content

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 77))

  • 1241 Accesses

Abstract

Financial institutions have to understand the risks that their financial instruments create as precisely as possible. To this end, mathematical models are developed which are usually based on tools from stochastic calculus. Most of the models are too complex to be analytically tractable and are hence analysed with the help of computer simulations which rely on efficient algorithms from scientific computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellmann, R.: Adaptive Control Processes: A Guided Tour. Princeton University Press (1961)

    Google Scholar 

  2. Bernsten, J., Espelid, T., Genz, A.: Algorithm 698: DCUHRE – an adaptive multidimensional integration routine for a vector of integrals. ACM Transactions on Mathematical Software 17, 452–456 (1991)

    Article  Google Scholar 

  3. Boyle, P.: Options: A Monte Carlo approach. J. Financial Economics 4, 323–338 (1977)

    Article  Google Scholar 

  4. Bungartz, H.J., Griebel, M.: Sparse grids. Acta Numerica 13, 1–123 (2004)

    Article  MathSciNet  Google Scholar 

  5. Caflisch, R., Morokoff, W., Owen, A.: Valuation of mortgage backed securities using Brownian bridges to reduce effective dimension. J. Comp. Finance 1(1), 27–46 (1997)

    Google Scholar 

  6. Davis, P., Rabinowitz, P.: Methods of Numerical Integration. Academic Press (1984)

    Google Scholar 

  7. Gerstner, T., Griebel, M.: Numerical integration using sparse grids. Numerical Algorithms 18, 209–232 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gerstner, T., Griebel, M.: Dimension–adaptive tensor–product quadrature. Computing 71(1), 65–87 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gerstner, T., Griebel, M., Holtz, M.: The Effective Dimension of Asset-Liability Management Problems in Life Insurance. In: C. Fernandes, H. Schmidli, N. Kolev (eds.) Proc. Third Brazilian Conference on Statistical Modelling in Insurance and Finance, pp. 148–153 (2007)

    Google Scholar 

  10. Gerstner, T., Griebel, M., Holtz, M., Goschnick, R., Haep, M.: A general asset-liability management model for the efficient simulation of portfolios of life insurance policies. Insurance: Mathematics and Economics 42(2), 704–716 (2008)

    Article  MATH  Google Scholar 

  11. Gerstner, T., Holtz, M.: Geometric tools for the valuation of performance-dependent options. In: M. Costantino, C. Brebbia (eds.) Computational Finance and its Applications II, pp. 161–170. WIT Press, London (2006)

    Chapter  Google Scholar 

  12. Gerstner, T., Holtz, M., Korn, R.: Valuation of performance-dependent options in a Black-Scholes framework. In: J. Appleby, D. Edelman, J. Miller (eds.) Numerical Methods for Finance, Financial Mathematics Series, vol. 8, pp. 203–214. Chapman & Hall/CRC (2007)

    Google Scholar 

  13. Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer (2003)

    Google Scholar 

  14. Griebel, M., Kuo, F., Sloan, I.: The smoothing effect of the ANOVA decomposition. J. Complexity (2010). Appeared online.

    Google Scholar 

  15. Griebel, M., Woźniakowski, H.: On the optimal convergence rate of universal and non-universal algorithms for multivariate integration and approximation. Mathematics of Computation 75(255), 1259–1286 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hegland, M.: Adaptive sparse grids. ANZIAM J. 44, C335–C353 (2003)

    MathSciNet  Google Scholar 

  17. Imai, J., Tan, K.: A general dimension reduction technique for derivative pricing. J. Comp. Finance 10(2), 129–155 (2006)

    Google Scholar 

  18. Kolmogorov, A.: On the representation of continuous functions of several variables by superpositions of continuous functions of several variables and addition. Dokl. Akad. Nauk SSSR 114, 953–956 (1957). English translation: American Math. Soc. Transl. (2), 28, 55-59, 1963.

    MATH  MathSciNet  Google Scholar 

  19. Ledoux, M.: The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs. American Mathematical Society (2001)

    Google Scholar 

  20. Lemieux, C.: Monte Carlo and Quasi-Monte Carlo Sampling. Springer Series in Statistics. Springer (2009)

    Google Scholar 

  21. Liu, R., Owen, A.: Estimating mean dimensionality of analysis of variance decompositions. J. the American Statistical Association 101, 712–721 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Meuer, H., Strohmaier, E., Dongarra, J., Simon, H.: http://top500.org (2010)

  23. Moskowitz, B., Caflisch, R.: Smoothness and dimension reduction in quasi-Monte Carlo methods. J. Math. Comp. Modeling 23, 37–54 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia (1992)

    MATH  Google Scholar 

  25. Novak, E., Ritter, K.: High dimensional integration of smooth functions over cubes. Numer. Math. 75, 79–97 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  26. Novak, E., Ritter, K., Steinbauer, A.: A multiscale method for the evaluation of Wiener integrals. In: C. Chui, L. Schumaker (eds.) Approximation Theory IX, Volume 2: Computational Aspects, pp. 251–258. Vanderbilt Univ. Press (1998)

    Google Scholar 

  27. Novak, E., Woźniakowski, H.: Intractability results for integration and discrepancy. J. Complexity 17, 388–441 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  28. Paskov, S., Traub, J.: Faster valuation of financial derivatives. J. Portfolio Management 22, 113–120 (1995)

    Article  Google Scholar 

  29. Petras, K.: Smolyak cubature of given polynomial degree with few nodes for increasing dimension. Numer. Math. 93(4), 729–753 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  30. Plaskota, L.: The exponent of discrepancy of sparse grids is at least 2.1933. Advances in Computational Mathematics 12, 3–24 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  31. Sloan, I., Woźniakowski, H.: When are quasi-Monte Carlo algorithms efficient for high-dimensional integrals? J. Complexity 14, 1–33 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  32. Smolyak, S.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk SSSR 4, 240–243 (1963)

    Google Scholar 

  33. Traub, J., Woźniakowski, H., Wasilkowski, G.: Information-Based Complexity. Academic Press, New York (1988)

    MATH  Google Scholar 

  34. Wang, X., Sloan, I.: Why are high-dimensional finance problems often of low effective dimension? SIAM J. Sci. Comput. 27(1), 159 – 183 (2005)

    MATH  MathSciNet  Google Scholar 

  35. Wasilkowski, G., Woźniakowski, H.: Weighted tensor product algorithms for linear multivariate problems. J. Complexity 15, 402–447 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  36. Zenger, C.: Sparse grids. In: W. Hackbusch (ed.) Parallel Algorithms for Partial Differential Equations, Notes on Numerical Fluid Mechanics, vol. 31. Vieweg (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Holtz .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Holtz, M. (2011). Introduction. In: Sparse Grid Quadrature in High Dimensions with Applications in Finance and Insurance. Lecture Notes in Computational Science and Engineering, vol 77. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16004-2_1

Download citation

Publish with us

Policies and ethics