SLiMSearch: A Webserver for Finding Novel Occurrences of Short Linear Motifs in Proteins, Incorporating Sequence Context

  • Norman E. Davey
  • Niall J. Haslam
  • Denis C. Shields
  • Richard J. Edwards
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6282)

Abstract

Short, linear motifs (SLiMs) play a critical role in many biological processes. The SLiMSearch (Short, Linear Motif Search) webserver is a flexible tool that enables researchers to identify novel occurrences of pre-defined SLiMs in sets of proteins. Numerous masking options give the user great control over the contextual information to be included in the analyses, including evolutionary filtering and protein structural disorder. User-friendly output and visualizations of motif context allow the user to quickly gain insight into the validity of a putatively functional motif occurrence. Users can search motifs against the human proteome, or submit their own datasets of UniProt proteins, in which case motif support within the dataset is statistically assessed for over- and under-representation, accounting for evolutionary relationships between input proteins. SLiMSearch is freely available as open source Python modules and all webserver results are available for download. The SLiMSearch server is available at: http://bioware.ucd.ie/slimsearch.html .

Keywords

short linear motif motif discovery minimotif elm 

References

  1. 1.
    Diella, F., Haslam, N., Chica, C., Budd, A., Michael, S., Brown, N.P., Trave, G., Gibson, T.J.: Understanding eukaryotic linear motifs and their role in cell signaling and regulation. Front Biosci. 13, 6580–6603 (2008)CrossRefPubMedGoogle Scholar
  2. 2.
    Gould, C.M., Diella, F., Via, A., Puntervoll, P., Gemund, C., Chabanis-Davidson, S., Michael, S., Sayadi, A., Bryne, J.C., Chica, C., Seiler, M., Davey, N.E., Haslam, N., Weatheritt, R.J., Budd, A., Hughes, T., Pas, J., Rychlewski, L., Trave, G., Aasland, R., Helmer-Citterich, M., Linding, R., Gibson, T.J.: ELM: the status of the 2010 eukaryotic linear motif resource. Nucleic Acids Res. 38, D167–D180 (2010)CrossRefGoogle Scholar
  3. 3.
    Kadaveru, K., Vyas, J., Schiller, M.R.: Viral infection and human disease–insights from minimotifs. Front Biosci. 13, 6455–6471 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Neduva, V., Russell, R.B.: Peptides mediating interaction networks: new leads at last. Curr. Opin. Biotechnol. 17, 465–471 (2006)CrossRefPubMedGoogle Scholar
  5. 5.
    Rajasekaran, S., Balla, S., Gradie, P., Gryk, M.R., Kadaveru, K., Kundeti, V., Maciejewski, M.W., Mi, T., Rubino, N., Vyas, J., Schiller, M.R.: Minimotif miner 2nd release: a database and web system for motif search. Nucleic Acids Res. 37, D185–D190 (2009)CrossRefGoogle Scholar
  6. 6.
    Ramu, C.: SIRW: A web server for the Simple Indexing and Retrieval System that combines sequence motif searches with keyword searches. Nucleic Acids Res. 31, 3771–3774 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    de Castro, E., Sigrist, C.J., Gattiker, A., Bulliard, V., Langendijk-Genevaux, P.S., Gasteiger, E., Bairoch, A., Hulo, N.: ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res. 34, W362–W365 (2006)CrossRefGoogle Scholar
  8. 8.
    Gutman, R., Berezin, C., Wollman, R., Rosenberg, Y., Ben-Tal, N.: QuasiMotiFinder: protein annotation by searching for evolutionarily conserved motif-like patterns. Nucleic Acids Res. 33, W255–W261 (2005)CrossRefGoogle Scholar
  9. 9.
    Bateman, A., Coin, L., Durbin, R., Finn, R.D., Hollich, V., Griffiths-Jones, S., Khanna, A., Marshall, M., Moxon, S., Sonnhammer, E.L., Studholme, D.J., Yeats, C., Eddy, S.R.: The Pfam protein families database. Nucleic Acids Res. 32, D138–D141 (2004)CrossRefGoogle Scholar
  10. 10.
    Sigrist, C.J., Cerutti, L., de Castro, E., Langendijk-Genevaux, P.S., Bulliard, V., Bairoch, A., Hulo, N.: PROSITE, a protein domain database for functional characterization and annotation. Nucleic Acids Res. 38, D161–D166 (2010)CrossRefGoogle Scholar
  11. 11.
    Chica, C., Labarga, A., Gould, C.M., Lopez, R., Gibson, T.J.: A tree-based conservation scoring method for short linear motifs in multiple alignments of protein sequences. BMC Bioinformatics 9, 229 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Davey, N.E., Shields, D.C., Edwards, R.J.: Masking residues using context-specific evolutionary conservation significantly improves short linear motif discovery. Bioinformatics 25, 443–450 (2009)CrossRefPubMedGoogle Scholar
  13. 13.
    Via, A., Gould, C.M., Gemund, C., Gibson, T.J., Helmer-Citterich, M.: A structure filter for the Eukaryotic Linear Motif Resource. BMC Bioinformatics 10, 351 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Jonassen, I., Collins, J.F., Higgins, D.G.: Finding flexible patterns in unaligned protein sequences. Protein Sci. 4, 1587–1595 (1995)CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bailey, T.L., Boden, M., Buske, F.A., Frith, M., Grant, C.E., Clementi, L., Ren, J., Li, W.W., Noble, W.S.: MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202–W208 (2009)CrossRefGoogle Scholar
  16. 16.
    Neduva, V., Russell, R.B.: DILIMOT: discovery of linear motifs in proteins. Nucleic Acids Res. 34, W350–W355 (2006)CrossRefGoogle Scholar
  17. 17.
    Davey, N.E., Shields, D.C., Edwards, R.J.: SLiMDisc: short, linear motif discovery, correcting for common evolutionary descent. Nucleic Acids Res. 34, 3546–3554 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Edwards, R.J., Davey, N.E., Shields, D.C.: SLiMFinder: A Probabilistic Method for Identifying Over-Represented, Convergently Evolved, Short Linear Motifs in Proteins. PLoS ONE 2, e967 (2007)CrossRefGoogle Scholar
  19. 19.
    Edwards, R.J., Davey, N.E., Shields, D.C.: CompariMotif: quick and easy comparisons of sequence motifs. Bioinformatics 24, 1307–1309 (2008)CrossRefPubMedGoogle Scholar
  20. 20.
    Davey, N.E., Haslam, N.J., Shields, D.C., Edwards, R.J.: SLiMFinder: a web server to find novel, significantly over-represented, short protein motifs. Nucleic Acids Res. (2010)Google Scholar
  21. 21.
    Dosztanyi, Z., Csizmok, V., Tompa, P., Simon, I.: IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21, 3433–3434 (2005)CrossRefPubMedGoogle Scholar
  22. 22.
    Bairoch, A., Apweiler, R., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M.J., Natale, D.A., O’Donovan, C., Redaschi, N., Yeh, L.S.: The Universal Protein Resource (UniProt). Nucleic Acids Res. 33, D154–D159 (2005)CrossRefGoogle Scholar
  23. 23.
    Davey, N.E., Edwards, R.J., Shields, D.C.: The SLiMDisc server: short, linear motif discovery in proteins. Nucleic Acids Res. 35, W455–W459 (2007)CrossRefGoogle Scholar
  24. 24.
    Russell, R.B., Gibson, T.J.: A careful disorderliness in the proteome: sites for interaction and targets for future therapies. FEBS Lett. 582, 1271–1275 (2008)CrossRefPubMedGoogle Scholar
  25. 25.
    Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997)CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Neuwald, A.F., Green, P.: Detecting patterns in protein sequences. J. Mol. Biol. 239, 698–712 (1994)CrossRefPubMedGoogle Scholar
  27. 27.
    Seiler, M., Mehrle, A., Poustka, A., Wiemann, S.: The 3of5 web application for complex and comprehensive pattern matching in protein sequences. BMC Bioinformatics 7, 144 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lo, K.W., Naisbitt, S., Fan, J.S., Sheng, M., Zhang, M.: The 8-kDa dynein light chain binds to its targets via a conserved (K/R)XTQT motif. J. Biol. Chem. 276, 14059–14066 (2001)CrossRefPubMedGoogle Scholar
  29. 29.
    Wellik, D.M.: Hox genes and vertebrate axial pattern. Curr. Top Dev. Biol. 88, 257–278 (2009)CrossRefPubMedGoogle Scholar
  30. 30.
    Gehring, W.J., Affolter, M., Burglin, T.: Homeodomain proteins. Annu Rev. Biochem. 63, 487–526 (1994)CrossRefPubMedGoogle Scholar
  31. 31.
    Sprules, T., Green, N., Featherstone, M., Gehring, K.: Lock and key binding of the HOX YPWM peptide to the PBX homeodomain. J. Biol. Chem. 278, 1053–1058 (2003)CrossRefPubMedGoogle Scholar
  32. 32.
    Michael, S., Trave, G., Ramu, C., Chica, C., Gibson, T.J.: Discovery of candidate KEN-box motifs using cell cycle keyword enrichment combined with native disorder prediction and motif conservation. Bioinformatics 24, 453–457 (2008)CrossRefPubMedGoogle Scholar
  33. 33.
    Hubbard, T.J., Aken, B.L., Ayling, S., Ballester, B., Beal, K., Bragin, E., Brent, S., Chen, Y., Clapham, P., Clarke, L., Coates, G., Fairley, S., Fitzgerald, S., Fernandez-Banet, J., Gordon, L., Graf, S., Haider, S., Hammond, M., Holland, R., Howe, K., Jenkinson, A., Johnson, N., Kahari, A., Keefe, D., Keenan, S., Kinsella, R., Kokocinski, F., Kulesha, E., Lawson, D., Longden, I., Megy, K., Meidl, P., Overduin, B., Parker, A., Pritchard, B., Rios, D., Schuster, M., Slater, G., Smedley, D., Spooner, W., Spudich, G., Trevanion, S., Vilella, A., Vogel, J., White, S., Wilder, S., Zadissa, A., Birney, E., Cunningham, F., Curwen, V., Durbin, R., Fernandez-Suarez, X.M., Herrero, J., Kasprzyk, A., Proctor, G., Smith, J., Searle, S., Flicek, P.: Ensembl 2009. Nucleic Acids Res. 37, D690–D697 (2009)CrossRefGoogle Scholar
  34. 34.
    Kersey, P.J., Lawson, D., Birney, E., Derwent, P.S., Haimel, M., Herrero, J., Keenan, S., Kerhornou, A., Koscielny, G., Kahari, A., Kinsella, R.J., Kulesha, E., Maheswari, U., Megy, K., Nuhn, M., Proctor, G., Staines, D., Valentin, F., Vilella, A.J., Yates, A.: Ensembl Genomes: extending Ensembl across the taxonomic space. Nucleic Acids Res. 38, D563–D569 (2010)CrossRefGoogle Scholar
  35. 35.
    Delpire, E., Gagnon, K.B.: Genome-wide analysis of SPAK/OSR1 binding motifs. Physiol Genomics 28, 223–231 (2007)CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Norman E. Davey
    • 1
  • Niall J. Haslam
    • 2
  • Denis C. Shields
    • 2
  • Richard J. Edwards
    • 3
  1. 1.European Molecular Biology LaboratoryStructural and Computational Biology UnitHeidelbergGermany
  2. 2.School of Medicine and Medical Sciences, UCD Complex and Adaptive Systems, Laboratory & UCD Conway Institute of Biomolecular and Biomedical SciencesUniversity College DublinDublinIreland
  3. 3.School of Biological SciencesUniversity of SouthamptonSouthamptonUK

Personalised recommendations