Joint Loop End Modeling Improves Covariance Model Based Non-coding RNA Gene Search

  • Jennifer Smith
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6282)

Abstract

The effect of more detailed modeling of the interface between stem and loop in non-coding RNA hairpin structures on efficacy of covariance-model-based non-coding RNA gene search is examined. Currently, the prior probabilities of the two stem nucleotides and two loop-end nucleotides at the interface are treated the same as any other stem and loop nucleotides respectively. Laboratory thermodynamic studies show that hairpin stability is dependent on the identities of these four nucleotides, but this is not taken into account in current covariance models. It is shown that separate estimation of emission priors for these nucleotides and joint treatment of substitution probabilities for the two loop-end nucleotides leads to improved non-coding RNA gene search.

Keywords

Sequence analysis RNA gene search covariance models 

References

  1. 1.
    Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  2. 2.
    Eddy, S.R., Durbin, R.: RNA Sequence Analysis Using Covariance Models. Nucleic Acids Research 22, 2079–2088 (1995)CrossRefGoogle Scholar
  3. 3.
    Karplus, K., Barrett, C., Hughey, R.: Hidden Markov Models for Detecting Remote Protein Homologies. Bioinformatics 14, 846–856 (1998)CrossRefPubMedGoogle Scholar
  4. 4.
    Eddy, S.R.: Hidden Markov Models. Curr. Opp. Structural Biology 6, 361–365 (1996)CrossRefGoogle Scholar
  5. 5.
    Griffiths-Jones, S., Moxon, S., Marshall, M., Khanna, A., Eddy, S.R., Bateman, A.: Rfam: Annotating Non-coding RNAs in Complete Genomes. Nucleic Acids Research 33, D121–D124 (2005)CrossRefGoogle Scholar
  6. 6.
    Rfam, R.N.A.: Families Database of Alignments and Covariance Models, version 9.1 (2008), http://rfam.janelia.org
  7. 7.
    Sjölander, K., Karplus, K., Brown, M., Hughey, R., Krogh, A., et al.: Dirichlet Mixtures: a Method for Improving Detection of Weak but Significant Protein Structure Momology. Comp. Appl. Biosci. 12, 327–345 (1996)PubMedGoogle Scholar
  8. 8.
    Eddy, S.R.: Infernal User’s Guide, version 1.0.2 (2010), http://infernal.rfam.org
  9. 9.
    Nawrocki, E., Eddy, S.R.: Query-dependent Banding (QDB) for Faster RNA Similarity Searches. PLoS Comp. Bio. 3, 540–554 (2007)CrossRefGoogle Scholar
  10. 10.
    Zucher, M.: Computer Prediction of RNA Structure. Methods Enzymology 180, 262–288 (1989)CrossRefGoogle Scholar
  11. 11.
    Wiese, K.C., Hendricks, A.: A Hybrid Clustering/Evolutionary Algorithm for RNA Folding. In: Symp. Comp. Intelligence Bioinformatics Comp. Biol., pp. 15–21. IEEE Press, New York (2008)Google Scholar
  12. 12.
    Smith, J.A., Wiese, K.C.: Integrating Thermodynamic and Observed-Frequency Data for Non-coding RNA Gene Search. In: Priami, C., Dressler, F., Akan, O., Ngom, A. (eds.) Trans. Computational Systems Biology X, pp. 124–142. Springer, Berlin (2008)CrossRefGoogle Scholar
  13. 13.
    Vecenie, C., Serra, M.: Stability of RNA Hairpin Loops Closed by AU Base Pairs. Biochemistry 43, 11813–11817 (2004)CrossRefPubMedGoogle Scholar
  14. 14.
    Dale, T., Smith, R., Serra, M.: A Test of the Model to Predict Unusually Stable RNA Hairpin Loop Stability. RNA 6, 608–615 (2000)CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Serra, M., Little, M., Axenson, T., Schadt, C., Turner, D.: RNA Hairpin Loop Stability Depends on Closing Base Pair. Nucleic Acids Research 21, 3845–3849 (1993)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Serra, M., Axenson, T., Turner, D.: A Model for the Stabilities of RNA Hairpins Based on a Study of the Sequence Dependence of Stability for Hairpins with Six Nucleotides. Biochemistry 33, 14289–14296 (1994)CrossRefPubMedGoogle Scholar
  17. 17.
    Giese, R., Beschart, K., Dale, T., Riley, C., Rowan, C., Sprouse, K., Serra, M.: Stability of RNA Hairpins Closed by Wobble Base Pairs. Biochemistry 37, 1094–1100 (1998)CrossRefPubMedGoogle Scholar
  18. 18.
    Freier, S., Kierzek, R., Jaeger, J., Sugimoto, N., Caruthers, M., Neilson, T., Turner, D.: Improved Free-Energy Parameters for Predictions of RNA Duplex Stability. Proc. Natl. Acad. Sci. USA 83, 9373–9377 (1986)CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Staple, D., Butcher, S.: Pseudoknots: RNA Structures with Diverse Functions. PLoS Bio. 3, 956–959 (2005)CrossRefGoogle Scholar
  20. 20.
    Chomsky, N.: Three Models for the Description of Language. IRE Trans. Information Theory 2, 113–124 (1956)CrossRefGoogle Scholar
  21. 21.
    Gumbel, J.: Statistics of Extremes. Columbia University Press, New York (1958)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jennifer Smith
    • 1
  1. 1.Electrical and Computer Engineering DepartmentBoise State UniversityBoiseUSA

Personalised recommendations