A Matrix Algorithm for RNA Secondary Structure Prediction

  • S. P. T. Krishnan
  • Mushfique Junayed Khurshid
  • Bharadwaj Veeravalli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6282)

Abstract

In this paper we propose a novel high-performance algorithm, referred to as MARSs (Matrix Algorithm for RNA Secondary Structure Prediction), for predicting RNA Secondary Structures with or without pseudoknots. The algorithm is capable of operating in both serial and parallel modes. The algorithm will take complete advantage of the explicit hardware parallelism increasingly available in todayś multi-core processors resulting in execution speedups. Unlike Dynamic Programming based algorithms, MARSs is non-recursive by design and therefore eliminates some of the disadvantages of Dynamic Programming based algorithms. We performed a large-scale experiment on a multi-core hardware using real sequences with verified structures. We detail and discuss the results from these experiments using metrics such as performance gains, run-times and prediction accuracy. This is one of the first attempts of its kind to provide a complete flexibility in evolving a RNA secondary structure with or without pseudoknots using a matrix-based approach.

Keywords

RNA secondary structure prediction parallel computing high performance computing multi-core 

References

  1. 1.
    Nussinov, R., Piecznik, G., Grigg, J.R., Kleitman, D.J.: Algorithms for loop matchings. SIAM Journal on Applied Mathematics 35, 68–82 (1978)CrossRefGoogle Scholar
  2. 2.
    Waterman, M.S., Smith, T.F.: Rapid dynamic programming methods for RNA secondary structure. Adv. Appl. Math. 7, 455–464 (1986)CrossRefGoogle Scholar
  3. 3.
    Lyngs, R., Zuker, M., Pedersen, C.: An Improved Algorithm for RNA Secondary Structure Prediction. Tech-report BRICS RS-99-15 (1999)Google Scholar
  4. 4.
    Rivas, E., Eddy, S.: A dynamic programming algorithm for RNA structure prediction including pseudoknots. J. Mol. Biol. 285(5), 2053–2068 (1999)CrossRefPubMedGoogle Scholar
  5. 5.
    Akutsu, T.: Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discrete Applied Mathematics 104, 45–62 (2000)CrossRefGoogle Scholar
  6. 6.
    Dirks, R., Pierce, N.A.: A partition function algorithm for nucleic acid secondary structure including pseudoknots. Journal of Computational Chemistry 2003 24, 1664–1677 (2003)Google Scholar
  7. 7.
    Reeder, J., Giegerich, R.: Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics. BMC Bioinformatics 5, 104 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Deogun, J., Donts, R., Komina, O., Ma, F.: RNA Secondary Structure Prediction with Simple Pseudoknots. In: APBC 2004, pp. 239–246 (2004)Google Scholar
  9. 9.
    Ruan, J., Stormo, G.D., Zhang, W.: ILM: a web server for predicting RNA secondary structures with pseudoknots. Nucleic Acids Research 32(Web Server Issue), W146–W149 (2004)CrossRefGoogle Scholar
  10. 10.
    Ren, J., Rastegari, B., Condon, A., Hoos, H.H.: HotKnots: Heuristic prediction of RNA secondary structures including pseudoknots. RNA 11, 1494–1504 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Tian, B., Bevilacqua, P.C., Diegelman-Parente, A., Mathews, M.B.: The double-stranded-RNA-binding motif: interference and much more. Nature Reviews Molecular Cell Biology 5, 1013–1023 (2004)CrossRefPubMedGoogle Scholar
  12. 12.
    Brion, P., Westhof, E.: Hierarchy and dynamics of RNA folding. Annu. Rev. Biophys. Biomol. Struct. 26, 113–137 (1997)CrossRefPubMedGoogle Scholar
  13. 13.
    Fu, X.Z., Wang, H., Harrison, W., Harrison, R.: RNA Pseudoknot Prediction Using Term Rewriting. International Journal of Data Mining and Bioinformatics (2006)Google Scholar
  14. 14.
    Batenburg, F.H., Gultyaev, A.P., Pleij, C.W.: PseudoBase: structural information on RNA pseudoknots. Nucleic Acids Research 29(1), 194–195 (2001)CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ding, Y., Chan, C.Y., Lawrence, C.E.: RNA secondary structure prediction by centroids in a Boltzmann weighted ensemble. RNA 11, 1157–1166 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Chen, J.L., Greider, C.W.: Functional analysis of the pseudoknot structure in human telomerase RNA. Proc. Natl. Acad. Sci. USA 102(23), 8080–8085 (2005)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • S. P. T. Krishnan
    • 1
  • Mushfique Junayed Khurshid
    • 2
  • Bharadwaj Veeravalli
    • 2
  1. 1.Institute for Infocomm Research, FusionopolisSingapore
  2. 2.National University of SingaporeSingapore

Personalised recommendations