Advertisement

Sub-grid and Spot Detection in DNA Microarray Images Using Optimal Multi-level Thresholding

  • Iman Rezaeian
  • Luis Rueda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6282)

Abstract

The analysis of DNA microarray images is a crucial step in gene expression analysis, since any errors in early stages are propagated in future steps in the analysis. When processing the underlying images, accurately separating the sub-grids and spots is of extreme importance for subsequent steps that include segmentation, quantification, normalization and clustering. We propose a fully automatic approach that first detects the sub-grids given the entire microarray image, and then detects the locations of the spots in each sub-grid. The approach first detects and corrects rotations in the images by an affine transformation, followed by a polynomial-time optimal multi-level thresholding algorithm to find the positions of the sub-grids and spots. Additionally, a new validity index is proposed in order to find the correct number of sub-grids in the microarray image, and the correct number of spots in each sub-grid. Extensive experiments on real-life microarray images show that the method performs these tasks automatically and with a high degree of accuracy.

Keywords

Microarray image gridding image analysis multi level thresholding 

References

  1. 1.
    Ceccarelli, B., Antoniol, G.: A Deformable Grid-matching Approach for Microarray Images. IEEE Transactions on Image Processing 15(10), 3178–3188 (2006)CrossRefPubMedGoogle Scholar
  2. 2.
    Bariamis, D., Maroulis, D., Iakovidis, D.: M 3 G: Maximum Margin Microarray Gridding. BMC Bioinformatics 11, 49 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. John Wiley and Sons, Inc., New York (2000)Google Scholar
  4. 4.
    Zacharia, E., Maroulis, D.: Micoarray image gridding via an evolutionary algorithm. In: IEEE International Conference on Image Processing, pp. 1444–1447 (2008)Google Scholar
  5. 5.
    Qi, F., Luo, Y., Hu, D.: Recognition of perspectively distorted planar grids. Pattern Recognition Letters 27(14), 1725–1731 (2006)CrossRefGoogle Scholar
  6. 6.
    Antoniol, G., Ceccarelli, M.: A Markov Random Field Approach to Microarray Image Gridding. In: Proc. of the 17th International Conference on Pattern Recognition, pp. 550–553 (2004)Google Scholar
  7. 7.
    Angulo, J., Serra, J.: Automatic Analysis of DNA Microarray Images Using Mathematical Morphology. Bioinformatics 19(5), 553–562 (2003)CrossRefPubMedGoogle Scholar
  8. 8.
    Rueda, L.: Sub-grid Detection in DNA Microarray Images. In: Proceedings of the IEEE Pacific-RIM Symposium on Image and Video Technology, pp. 248–259 (2007)Google Scholar
  9. 9.
    Rueda, L.: An Efficient Algorithm for Optimal Multilevel Thresholding of Irregularly Sampled Histograms. In: Proceedings of the 7th International Workshop on Statistical Pattern Recognition, pp. 612–621 (2008)Google Scholar
  10. 10.
    Rueda, L., Vidyadharan, V.: A Hill-climbing Approach for Automatic Gridding of cDNA Microarray Images. IEEE Transactions on Computational Biology and Bioinformatics 3(1), 72–83 (2006)CrossRefPubMedGoogle Scholar
  11. 11.
    Katzer, M., Kummer, F., Sagerer, G.: A Markov Random Field Model of Microarray Gridding. In: Proceeding of the 2003 ACM Symposium on Applied Computing, pp. 72–77 (2003)Google Scholar
  12. 12.
    Maulik, U., Bandyopadhyay, S.: Performance Evaluation of Some Clustering Algorithms and Validity Indices. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(12), 1650–1655 (2002)CrossRefGoogle Scholar
  13. 13.
    Wang, Y., Ma, M., Zhang, K., Shih, F.: A Hierarchical Refinement Algorithm for Fully Automatic Gridding in Spotted DNA Microarray Image Processing. Information Sciences 177(4), 1123–1135 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Iman Rezaeian
    • 1
  • Luis Rueda
    • 1
  1. 1.School of Computer ScienceUniversity of WindsorWindsorCanada

Personalised recommendations