Advertisement

Time Series Gene Expression Data Classification via L1-norm Temporal SVM

  • Carlotta Orsenigo
  • Carlo Vercellis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6282)

Abstract

Machine learning methods have been successfully applied to the phenotype classification of many diseases based on static gene expression measurements. More recently microarray data have been collected over time, making available datasets composed by time series of expression gene profiles. In this paper we propose a new method for time series classification, based on a temporal extension of L 1-norm support vector machines, that uses dynamic time warping distance for measuring time series similarity. This results in a mixed-integer optimization model which is solved by a sequential approximation algorithm. Computational tests performed on two benchmark datasets indicate the effectiveness of the proposed method compared to other techniques, and the general usefulness of the approaches based on dynamic time warping for labeling time series gene expression data.

Keywords

Time series classification microarray data L1-norm support vector machines dynamic time warping 

References

  1. 1.
    Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)CrossRefPubMedGoogle Scholar
  2. 2.
    Furey, T., Cristianini, N., Duffy, N., Bednarski, D., Schummer, M., Haussler, D.: Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16, 906–914 (2000)CrossRefPubMedGoogle Scholar
  3. 3.
    Lai, C., Reinders, M.J.T., van’t Veer, L.J., Wessels, L.F.A.: A comparison of univariate and multivariate gene selection techniques for classification of cancer datasets. BMC Bioinformatics 7, 235 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Cho, S.B., Won, H.H.: Cancer classification using ensemble of neural networks with multiple significant gene subsets. Applied Intelligence 26, 243–250 (2007)CrossRefGoogle Scholar
  5. 5.
    Peddada, S., Lobenhofer, E., Li, L., Afshari, C., Weinberg, C., Umbach, D.: Gene selection and clustering for time-course and dose-response microarray experiments using order-restricted inference. Bioinformatics 19, 834–841 (2003)CrossRefPubMedGoogle Scholar
  6. 6.
    Baranzini, S., Mousavi, P., Rio, J., Caillier, S., Stillman, A., Villoslada, P., Wyatt, M., Comabella, M., Greller, L., Somogyi, R., Montalban, X., Oksenberg, J.: Transcription-based prediction of response to IFNβ using supervised computational methods. PLoS Biology 3, 166–176 (2005)CrossRefGoogle Scholar
  7. 7.
    Lin, T., Kaminski, N., Bar-Joseph, Z.: Alignment and classification of time series gene expression in clinical studies. In: ISMB (Supplement of Bioinformatics), pp. 147–155 (2008)Google Scholar
  8. 8.
    Kadous, M.W., Sammut, C.: Classification of multivariate time series and structured data using constructive induction. Machine Learning 58, 179–216 (2005)CrossRefGoogle Scholar
  9. 9.
    Keogh, E., Ratanamahatana, C.A.: Exact indexing of dynamic time warping. Knowledge and Information Systems 7, 358–386 (2004)CrossRefGoogle Scholar
  10. 10.
    Xi, X., Keogh, E., Shelton, C., Wei, L.: Fast time series classification using numerosity reduction. In: Proc. of the 23rd International Conference on Machine Learning, pp. 1033–1040 (2006)Google Scholar
  11. 11.
    Shimodaira, H., Noma, K.I., Nakai, M., Sagayama, S.: Dynamic time-alignment kernel in support vector machine. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) NIPS, pp. 921–928. MIT Press, Cambridge (2001)Google Scholar
  12. 12.
    Bahlmann, C., Haasdonk, B., Burkhardt, H.: On-line handwriting recognition with support vector machines: A kernel approach. In: IWFHR ’02: Proc. of the Eighth International Workshop on Frontiers in Handwriting Recognition, pp. 49–54. IEEE Computer Society, Washington (2002)CrossRefGoogle Scholar
  13. 13.
    Cuturi, M., Vert, J.P., Birkenes, O., Matsui, T.: A kernel for time series based on global alignments. In: Proc. of ICASSP, pp. 413–416 (2007)Google Scholar
  14. 14.
    Orsenigo, C., Vercellis, C.: Combining discrete SVM and fixed cardinality warping distances for multivariate time series classification. Pattern Recognition 43, 3787–3794 (2010)CrossRefGoogle Scholar
  15. 15.
    Orsenigo, C., Vercellis, C.: Discrete support vector decision trees via tabu-search. Journal of Computational Statistics and Data Analysis 47, 311–322 (2004)CrossRefGoogle Scholar
  16. 16.
    Orsenigo, C., Vercellis, C.: Multicategory classification via discrete support vector machines. Computational Management Science 6, 101–114 (2009)CrossRefGoogle Scholar
  17. 17.
    Bradley, P.S., Mangasarian, O.L.: Massive data discrimination via linear support vector machines. Optimization Methods and Software 13, 1–10 (2000)CrossRefGoogle Scholar
  18. 18.
    Zhu, J., Rosset, S., Hastie, T., Tibshirani, R.: 1-norm support vector machines. Neural Information Processing Systems 16 (2003)Google Scholar
  19. 19.
    Mangasarian, O.L.: Exact 1-norm support vector machines via unconstrained convex differentiable minimization. Journal of Machine Learning Research 7, 1517–1530 (2006)Google Scholar
  20. 20.
    Allwein, E., Schapire, R., Singer, Y.: Reducing multiclass to binary: a unifying approach for margin classifiers. Journal of Machine Learning Research 1, 113–141 (2000)Google Scholar
  21. 21.
    Vapnik, V.: The nature of statistical learning theory. Springer, New York (1995)CrossRefGoogle Scholar
  22. 22.
    Cristianini, N., Shawe-Taylor, J.: An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
  23. 23.
    Schölkopf, B., Smola, A.: Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press, Cambridge (2002)Google Scholar
  24. 24.
    Cho, R.J., Campbell, M.J., Winzeler, E.A., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T.G., Gabrielian, A.E., Landsman, D., Lockhart, D.J., Davis, R.W.: A genome-wide transcriptional analysis of the mitotic cell cycle. Molecular Cell 2, 65–73 (1998)CrossRefPubMedGoogle Scholar
  25. 25.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Carlotta Orsenigo
    • 1
  • Carlo Vercellis
    • 1
  1. 1.Dept. of Management, Economics and Industrial EngineeringPolitecnico di MilanoMilanoItaly

Personalised recommendations