Measuring the Quality of Shifting and Scaling Patterns in Biclusters

  • Beatriz Pontes
  • Raúl Giráldez
  • Jesús S. Aguilar-Ruiz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6282)


The most widespread biclustering algorithms use the Mean Squared Residue (MSR) as measure for assessing the quality of biclusters. MSR can identify correctly shifting patterns, but fails at discovering biclusters presenting scaling patterns. Virtual Error (VE) is a measure which improves the performance of MSR in this sense, since it is effective at recognizing biclusters containing shifting patters or scaling patterns as quality biclusters. However, VE presents some drawbacks when the biclusters present both kind of patterns simultaneously. In this paper, we propose a improvement of VE that can be integrated in any heuristic to discover biclusters with shifting and scaling patterns simultaneously.


Gene Expression Data Virtual Condition Scaling Pattern Pattern Equation Combine Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aguilar-Ruiz, J.S.: Shifting and scaling patterns from gene expression data. Bioinformatics 21, 3840–3845 (2005)CrossRefPubMedGoogle Scholar
  2. 2.
    Aguilar-Ruiz, J.S., Rodriguez, D.S., Simovici, D.A.: Biclustering of gene expression data based on local nearness. In: Proceedings of EGC 2006, Lille, France, pp. 681–692 (2006)Google Scholar
  3. 3.
    Baldi, P.: DNA Microarrays and Gene Expression: From Experiments to Data Analysis and Modeling. Cambridge University Press, Cambridge (2002)CrossRefGoogle Scholar
  4. 4.
    Bleuler, S., Prelić, A., Zitzler, E.: An EA framework for biclustering of gene expression data. In: Congress on Evolutionary Computation (CEC-2004), pp. 166–173. IEEE, Los Alamitos (2004)Google Scholar
  5. 5.
    Bryan, K., Cunningham, P., Bolshakova, N.: Application of simulated annealing to the biclustering of gene expression data. IEEE Transactions on Information Technology on Biomedicine (2006)Google Scholar
  6. 6.
    Cano, C., Adarve, L., López, J., Blanco, A.: Possibilistic approach for biclustering microarray data. Computers in Biology and Medicine 37(10), 1426–1436 (2007)CrossRefPubMedGoogle Scholar
  7. 7.
    Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proceedings of the 8th International Conference on Intellingent Systemns for Molecular Biology, La Jolla, CA, pp. 93–103 (2000)Google Scholar
  8. 8.
    Cho, H., Dhillon, I.S.: Effect of data transformation on residue. Technical report (2007)Google Scholar
  9. 9.
    Coelho, G.P., de Franca, F.O., Zuben, F.J.V.: Multi-objective biclustering: When non-dominated solutions are not enough. Journal of Mathematical Modelling and Algorithms 8(2), 175–202 (2009)CrossRefGoogle Scholar
  10. 10.
    Divina, F., Aguilar-Ruiz, J.S.: Biclustering of expression data with evolutionary computation. IEEE Transactions on Knowledge & Data Engineering 18(5), 590–602 (2006)CrossRefGoogle Scholar
  11. 11.
    Divina, F., Aguilar-Ruiz, J.S., Pontes, B., Giráldez, R.: An effective measure for assessing the quality of biclusters (in Press, 2010)Google Scholar
  12. 12.
    Hartigan, J.: Direct clustering of a data matrix. Journal of the American Statistical Association 67(337), 123–129 (1972)CrossRefGoogle Scholar
  13. 13.
    Liu, J., Li, Z., Hu, X., Chen, Y.: Biclustering of microarray data with mospo based on crowding distance. BMC bioinformatics 10(suppl. 4), S9+ (2009)CrossRefGoogle Scholar
  14. 14.
    Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: A survey. IEEE Transactions on Computational Biology and Bioinformatics 1, 24–25 (2004)CrossRefPubMedGoogle Scholar
  15. 15.
    Pontes, B., Divina, F., Giráldez, R., Aguilar-Ruiz, J.S.: Virtual error: A new measure for evolutionary biclustering. In: Fifth European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics (EvoBio 2007), pp. 217–222 (2007)Google Scholar
  16. 16.
    Pontes, B., Giráldez, R., Divina, F., Martínez-Álvarez, F.: Evaluación de biclusters en un entorno evolutivo. In: IV Taller nacional de minería de datos y aprendizaje (TAMIDA), pp. 1–10 (2007)Google Scholar
  17. 17.
    Tanay, A., Sharan, R., Shamir, R.: Discovering statistically significant biclusters in gene expression data. Bioinformatics 18, 136–144 (2002)CrossRefGoogle Scholar
  18. 18.
    Tilstone, C.: Dna microarrays: Vital statistics. Nature 424, 610–612 (2003)CrossRefPubMedGoogle Scholar
  19. 19.
    Wang, H., Wang, W., Yang., J., Yu, P.S.: Clustering by pattern similarity in large data sets. In: ACM SIGMOD International Conference on Management of Data, Madison, WI, pp. 394–405 (2002)Google Scholar
  20. 20.
    Xu, X., Lu, Y., Tung, A.K.H., Wang, W.: Mining shifting-and-scaling co-regulation patterns on gene expression profiles. In: 22nd International Conference on Data Engineering (ICDE’06), pp. 89–99 (2006)Google Scholar
  21. 21.
    Yang, J., Wang, H., Wang, W., Yu, P.S.: An improved biclustering method for analyzing gene expression profiles. International Journal on Artificial Intelligence Tools 14, 771–790 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Beatriz Pontes
    • 1
  • Raúl Giráldez
    • 2
  • Jesús S. Aguilar-Ruiz
    • 2
  1. 1.Department of Computer ScienceUniversity of SevilleSevillaSpain
  2. 2.School of EngineeringPablo de Olavide UniversitySevillaSpain

Personalised recommendations