Advertisement

Efficient Roughness Recognition for Velocity Updating by Wheeled-Robots Navigation

  • Farid García
  • Matías Alvarado
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6256)

Abstract

In this paper is shown that the Appearance-Based modeling is the best pattern recognition method for supporting the velocity updating of wheeled-robots navigation. Although Appearance-Based recognition algorithms have lower accuracy than the ones for detailed pattern recognition, they successfully classify terrain textures by regarding the average of the appearance. Actually, the detailed recognition algorithms success in recognizing patterns depicted with lines, dots or borders, but they fail for recognizing patterns where the average appearance is required. As human driving experience shows, the assessment of the average appearance is needed for velocity updating during navigation on outdoor terrains. Human drivers make the velocity adjusting based on an estimation of the terrain average appearance. Hence, as the experimental result illustrate, the algorithms for average appearance recognition are the best option for training wheeled-robot for velocity updating while navigating over outdoor terrains.

Keywords

Roughness Recognition Velocity Updating Wheeled-Robots Navigation 

References

  1. 1.
    Bajracharya, M., Maimone, M.W., Helmick, D.: Autonomy for Mars Rovers: Past, Present, and Future. Computer 41, 44–50 (2008)CrossRefGoogle Scholar
  2. 2.
    Ishigami, G., Nagatani, K., Yoshida, K.: Path Planning for Planetary Exploration Rovers and Its Evaluation Based on Wheel Slip Dynamics. In: IEEE International Conference on Robotics and Automation, pp. 2361–2366 (2007)Google Scholar
  3. 3.
    Seraji, H., Howard, A.: Behavior-Based Robot Navigation on Challenging Terrain: A Fuzzy Logic Approach. IEEE Trans. Robot Autom. 18, 308–321 (2002)CrossRefGoogle Scholar
  4. 4.
    Larson, A.C., Voyles, R.M., Demir, G.K.: Terrain Classification Using Weakly-Structured Vehicle/Terrain Interaction. Auton. Robot 19, 41–52 (2005)CrossRefGoogle Scholar
  5. 5.
    Brooks, C.A., Iagnemma, K.: Visual Detection of Novel Terrain via Two-Class Classification. In: Proceedings of the 2009 ACM Symposium on Applied Computing, pp. 1145–1150 (2009)Google Scholar
  6. 6.
    Pereira, G.A.S., Pimenta, L.C.A., Chaimowicz, L., Fonseca, A.F., de Almeida, D.S.C., Correa, L.Q., Mesquita, R.C., Campos, F.M.: Robot Navigation in Multi-Terrain Outdoor Environments. Int. J. Robot Res. 28, 685–700 (2009)CrossRefGoogle Scholar
  7. 7.
    Pietikäinen, M., Nurmela, T., Mäenpää, T., Turtinen, M.: View-Based Recognition of Real-World Textures. Pattern Recogn. 37, 313–323 (2004)CrossRefzbMATHGoogle Scholar
  8. 8.
    Liao, S., Chung, A.C.S.: Texture Classification by Using Advanced Local Binary Patterns and Spatial Distribution of Dominant Patterns. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 1221–1224 (2007)Google Scholar
  9. 9.
    Columbia Utrecht Reflectance and Texture Database, http://ww1.cs.columbia.edu/CAVE//software/curet/
  10. 10.
    Turk, M., Pentland, A.: Eigenfaces for Recognition. J. Cognitive Neurosci. 3, 71–86 (1991)CrossRefGoogle Scholar
  11. 11.
    Kahraman, F., Stegmann, M.B.: Towards Illumination-Invariant Localization of Faces Using Active Appearance Models. In: 7th Nordic Signal Processing Symposium, p. 4 (2006)Google Scholar
  12. 12.
    Robotis Co., Ltd, http://www.robotis.com
  13. 13.
    Tsai, D.M., Tseng, C.F.: Surface Roughness Classification for Castings. Pattern Recogn. 32, 389–405 (1999)CrossRefGoogle Scholar
  14. 14.
    Lambert, A., Gruyer, D., Pierre, G.S., Ndjeng, A.N.: Collision Probability Assessment for Speed Control. In: 11th International IEEE Conference on Intelligent Transportation Systems, pp. 1043–1048 (2008)Google Scholar
  15. 15.
    Selekwa, M.F., Dunlap, D.D., Shi, D., Collins, E.G.: Robot Navigation in Very Cluttered Environments by Preference-Based Fuzzy Behaviors. Robot Auton. Syst. 56, 231–246 (2008)CrossRefGoogle Scholar
  16. 16.
    Ward, K., Zelinsky, A.: Acquiring Mobile Robot Behaviors by Learning Trajectory Velocities. Auton. Robot 9, 113–133 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Farid García
    • 1
  • Matías Alvarado
    • 1
  1. 1.Departamento de ComputaciónCentro de Investigación y de Estudios Avanzados – IPNSan Pedro Zacatenco

Personalised recommendations