ANIMA: Non-conventional Brain-Computer Interfaces in Robot Control through Electroencephalography and Electrooculography, ARP Module

  • Luis F. Reina
  • Gerardo Martínez
  • Mario Valdeavellano
  • Marie Destarac
  • Carlos Esquit
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6256)

Abstract

ANIMA has as a primary objective to compare three non-conventional human computer interfaces that comply with the industrial robot ST Robotics R-17 instructions. This module, Alpha Waves Related Potentials -ARP- explains how brain waves are obtained, processed, analyzed and identified depending on their frequency. This module makes use of the Open EEG Project’s open hardware monitor for brain wave activity, called the modular EEG. The brain waves are obtained through an electrode cap complying with the international 10-20 system for electrode positioning. The brain waves are processed with a fast Fourier transform using a micro-controller and analyzed in software identifying the alpha wave’s contribution. A program identifies the amount of time that alpha wave generation was maintained through concentration, and instructions are sent to the robotic arm, executing one of four pre-defined routines. Thirty percent of the users attained control over the robotic arm with the human computer interface.

Keywords

Electrode Position Robot Control Brain Wave Alpha Wave Bayesian Network Classifier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Johnston, W.: Silent Music: The Science of Meditation, p. 190. Fordham University Press, [trad.] Carmen Bustos (1997)Google Scholar
  2. 2.
    Transformada de Fourier: Escuela Universitaria de Ingeniería Técnica de Telecomunicación, Universidad Politécnica de Madrid (2009), http://www.diac.upm.es/acceso_profesores/asignaturas/tdi/tdi/transformadas/pdf/fourier1.pdf
  3. 3.
    Valdeavellano, M.R.: ANIMA: Métodos no convencionales de interfaz en el control de robots a través de la electroencefalografía y la electrooculografía: Módulo ocular. Universidad del Valle de Guatemala, Guatemala (2009)Google Scholar
  4. 4.
    Martínez, G.E.: ANIMA: Métodos no convencionales de interfaz en el control de robots a través de la electroencefalografía y la electrooculografía: Módulo motriz. Universidad del Valle de Guatemala, Guatemala (2009)Google Scholar
  5. 5.
    ModularEEG. OpenEEG Project (2008), http://openeeg.sourceforge.net/
  6. 6.
    Python Software Foundation. Python Programming Language (2010), http://python.org/
  7. 7.
    Open EEG Gadgets. OLIMEX Ltd. (2009), http://www.olimex.com/gadgets/index.html
  8. 8.
    Palke, A.: Brainathlon: Enhancing Brainwave Control Through Brain-Controlled Game Play, p. 37 (2003), http://www.webkitchen.com/brainathlon/files/thesis.pdf
  9. 9.
    Lee, J.C., Tan, D.S.: Using a low-cost electroencephalograph for task classification in HCI research. In: Symposium on User Interface Software and Technology on Sensing from head to toe, pp. 81–90 (2006)Google Scholar
  10. 10.
    Keirn, Z.A., Aunon, J.I.: A new mode of communication between man and his surroundings. IEEE Transactions on Biomedical Engineering 37(12), 1209–1214 (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Luis F. Reina
    • 1
  • Gerardo Martínez
    • 1
  • Mario Valdeavellano
    • 1
  • Marie Destarac
    • 1
  • Carlos Esquit
    • 1
  1. 1.Department of Electronics EngineeringDel Valle de Guatemala UniversityGuatemala

Personalised recommendations