Advertisement

Fringe-Pattern Demodulation Using a Parametric Method Based on Differential Evolution

  • J. F. Jimenez
  • F. J. Cuevas
  • J. H. Sossa
  • L. E. Gomez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6256)

Abstract

A parametric method to carry out fringe pattern demodulation by means of Differential Evolution is presented. The phase is approximated by the parametric estimation of an nth-grade polynomial so that no further unwrapping is required. On the other hand, a different parametric function can be chosen according to the prior knowledge of the phase behavior. A differential evolution is codified with the parameters of the function that estimates the phase. The differential evolution evolves until a fitness average threshold is obtained. The method can demodulate noisy fringe patterns and even a one-image closed-fringe pattern successfully.

Keywords

Phase retrieval Fringe analysis Optical metrology Differential Evolution 

References

  1. 1.
    Martín, F., et al.: New advances in Automatic Reading of VLP’s. In: Proc. SPC-2000 (IASTED), Marbella, España, pp. 126–131 (2000)Google Scholar
  2. 2.
    Malacara, D., Servin, M., Malacara, Z.: Interferogram Analysis for Optical Testing. Marcel Dekker, New York (1998)Google Scholar
  3. 3.
    Malacara, D.: Optical Shop Testing. Wiley, New York (1992)Google Scholar
  4. 4.
    Creath, K.: In: Wolf, E. (ed.) Progress in Optics, vol. 26, p. 350. Elsevier, Amsterdam (1988)Google Scholar
  5. 5.
    Creath, K.: In: Robinson, D., Reid, G.T. (eds.) Interferogram Analysis, p. 94. IOP Publishing, London (1993)Google Scholar
  6. 6.
    Takeda, M., Ina, H., Kobayashi, S.: Fourier–transform method of fringe–pattern analysis for computer–based topography and interferometry. Journal of Optical Soc. of America 72, 156–160 (1981)CrossRefGoogle Scholar
  7. 7.
    Su, X., Chen, W.: Fourier transform profilometry: a review. Optics and Lasers in Engineering 35(5), 263–284 (2001)CrossRefGoogle Scholar
  8. 8.
    Womack, K.H.: Interferometric phase measurement using spatial synchronous detection. Opt. Eng. 23, 391–395 (1984)Google Scholar
  9. 9.
    Servin, M., Rodriguez–Vera, R.: Two dimensional phase locked loop demodulation of interferograms. Journal of Modern Optics 40(11), 2087–2094 (1993)CrossRefGoogle Scholar
  10. 10.
    Ghiglia, D.C., Romero, L.A.: Robust two–dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods. Journal of the Optical Society of America A 11(1), 107–117 (1994)CrossRefGoogle Scholar
  11. 11.
    Su, X., Xue, L.: Phase unwrapping algorithm based on fringe frequency analysis in Fourier-transform profilometry. Optical Engineering 40, 637–643 (2001)CrossRefGoogle Scholar
  12. 12.
    Servin, M., Cuevas, F.J., Malacara, D., Marroquin, J.L., Rodriguez-Vera, R.: Phase unwrapping through demodulation by use of the regularized phase–tracking technique. Applied Optics 38(10), 1934–1941 (1999)CrossRefGoogle Scholar
  13. 13.
    Servin, M., Marroquin, J.L., Cuevas, F.J.: Demodulation of a single interferogram by use a two-dimensional regularized phase-tracking technique. Applied Optics 36(19), 4540–4548 (1997)CrossRefGoogle Scholar
  14. 14.
    Villa, J., Servin, M.: Robust profilometer for the measurement of 3-D object shapes based on a regularized phase tracker. Optics and Lasers in Engineering 31(4), 279–288 (1999)CrossRefGoogle Scholar
  15. 15.
    Quiroga, J.A., Gonzalez-Cano, A.: With a Regularized Phase-Tracking Technique. Applied Optics 39(17), 2931–2940 (2000)CrossRefGoogle Scholar
  16. 16.
    Cuevas, F.J., Servin, M., Stavroudis, O.N., Rodriguez-Vera, R.: Multi–Layer neural network applied to phase and depth recovery from fringe patterns. Optics Communications 181(4-6), 239–259 (2000)CrossRefGoogle Scholar
  17. 17.
    Cuevas, F.J., Servin, M., Rodriguez-Vera, R.: Depth object recovery using radial Basis Functions. Optics Communications 163(4-6), 270–277 (1999)CrossRefGoogle Scholar
  18. 18.
    Cuevas, F.J., Sossa, J.H., Servin, M.: A parametric method applied to phase recovery from a fringe pattern based on a genetic algorithm. Optics Communications, Vol 203(3-6), 213–223 (2002)CrossRefGoogle Scholar
  19. 19.
    Servin, M., Marroquin, J.L., Cuevas, F.J.: Fringe-follower regularized phase tracker for demodulation of closed-fringe interferograms. Journal of the Optical Society of America A 18(3), 689–695 (2001)CrossRefGoogle Scholar
  20. 20.
    Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution - A Practical Approach to Global Optimization. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  21. 21.
    Storn, R., Price, K.: Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization 11(4), 341–359 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Li, X.: Efficient Differential Evolution using Speciation for Multimodal Function Optmization. In: Genetic and Evolutionary Computation Conference. Proceedings of the conference on Genetic and evolutionary computation, Washington, D.C., USA (2005) Google Scholar
  23. 23.
    Robic, T., Filipic, B.: DEMO: Differential Evolution for Multiobjective. In: Proceedings of the 3rd International Conference on Evolutionary MultiCriterion Optimization (EMO), pp. 520–533 (2005)Google Scholar
  24. 24.
    Roger, L.S., Tan, M.S., Rangaiah, G.P.: Global Optimization of Benchmark and Phase Equilibrium Problems Using Differential Evolution. National University of Singapore, Singapore (2006)Google Scholar
  25. 25.
    Gamperle, R., Müller, S.D., Koumoutsakos, P.: A Parameter Study for Differential Evolution. In: Proceedings WSEAS International Conference on Advances in Intelligent Systems, Fuzzy Systems, Evolutionary Computation, pp. 293–298 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • J. F. Jimenez
    • 1
  • F. J. Cuevas
    • 2
  • J. H. Sossa
    • 1
  • L. E. Gomez
    • 1
  1. 1.Centro de Investigación en Computación-IPNUnidad Profesional Adolfo-López MateosMexico
  2. 2.Centro de Investigaciones en Óptica A.C.León GtoMéxico

Personalised recommendations