A Novel Method for Counting Models on Grid Boolean Formulas

  • Carlos Guillén
  • Guillermo De Ita
  • Aurelio López-López
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6256)


We research on the possible orientations patterns of a grid graph G, and propose a method for counting certain combinatorial structures over the class of orientations of G. For example, our method can be applied for counting sink-free orientations of G, as well as it can be applied for solving the #2SAT problem for grid Boolean formulas.

Our proposal extends the classical transfer matrix method used for counting the number of independent sets in a grid.


Grid Computing Transfer Matrix Method #2SAT Problem 


  1. 1.
    Baxter, R.J.: Planar Lattice Gases with Nearest-Neighbour Exclusion. Annals of Combinatorics 3, 191–203 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Guillén, C., Vera, E., López-López, A., De Ita, G.: Applying the Transfer Matrix Method for Supervising Lines in a Network Grid. In: Proc. REV 2008 (2008),
  3. 3.
    Barbosa, V.C., Ferreira, R.G.: On the phase transitions of graph coloring and independent sets. Physica A: Statistical Mechanics and its Applications 343, 401–423 (2004)Google Scholar
  4. 4.
    Calkin, N.J.: The Number of Independent Sets in a Grid Graph. SIAM Journal on Discrete Mathematics 11(1), 54–60 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gärtner, B., Morris, W., Rüst, L.: Unique Sink Orientations of Grids. Algorithmica 51(2), 200–235 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Golin, M.J., Leung, Y.C., Wang, Y., Yong, X.: Counting Structures in Grid Graphs, Cylinders and Tori Transfer Matrices: Survey and New Results. In: ALENEX/ANALCO, pp. 250–258 (2005)Google Scholar
  7. 7.
    Grohe, M., Marx, D.: Constraint Solving via Fractional Edge Covers. In: Soda’06, Miami (2006)Google Scholar
  8. 8.
    Reinhardt, E.: The Fibonacci Number of a Grid Graph and a New Class of Integer Sequences. JIS Journal of Integer Sequences 88(2), 1–16 (2005) Article 05.2.6MathSciNetzbMATHGoogle Scholar
  9. 9.
    Roth, D.: On the Hardness of Approximate Reasoning. Artificial Intelligence, 273–302 (1996)Google Scholar
  10. 10.
    Roth, R.M., Siegel, P.H., Wolf, J.K.: Efficient Coding Schemes for the Hard-Square Model. IEEE Trans. Inform. Theory 47, 1166–1176 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Russ, B.: Randomized Algorithms: Approximation, Generation, and Counting, Distinguished dissertations. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  12. 12.
    Vadhan Salil, P.: The complexity of Counting in Sparse, Regular, and Planar Graphs. SIAM Journal on Computing 31(2), 398–427 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J. Comput. 8(3) (1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Carlos Guillén
    • 1
  • Guillermo De Ita
    • 1
  • Aurelio López-López
    • 2
  1. 1.Facultad de Ciencias de la ComputaciónBUAPMexico
  2. 2.Instituto Nacional de AstrofísicaÓptica y ElectrónicaMexico

Personalised recommendations