New Dissimilarity Measures for Ultraviolet Spectra Identification

  • Andrés Eduardo Gutiérrez-Rodríguez
  • Miguel Angel Medina-Pérez
  • José Fco. Martínez-Trinidad
  • Jesús Ariel Carrasco-Ochoa
  • Milton García-Borroto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6256)


Ultraviolet Spectra (UVS) analysis is a frequent tool in tasks like diseases diagnosis, drugs detection and hyperspectral remote sensing. A key point in these applications is the UVS comparison function. Although there are several UVS comparisons functions, creating good dissimilarity functions is still a challenge because there are different substances with very similar spectra and the same substance may produce different spectra. In this paper, we introduce a new spectral dissimilarity measure for substances identification, based on the way experts visually match the spectra shapes. We also combine the new measure with the Spectral Correlation Measure. A set of experiments conducted with a database of real substances reveals superior results of the combined dissimilarity, with respect to state-of-the-art measures. We use Receiver Operating Characteristic curve analysis to show that our proposal get the best tradeoff between false positive rates and true positive rates.


Ultraviolet Spectra Ultraviolet Spectra Comparisons Functions Substance Identification Dissimilarity Measures 


  1. 1.
    Paclík, P., Duin, R.P.W.: Classifying spectral data using relational representation. In: International Workshop on Spectral Imaging, pp. 31–34 (2003)Google Scholar
  2. 2.
    Demir, B., Ertürk, S.: Improved classification and segmentation of hyperspectral images using spectral warping. Int. J. Remote Sens. 29, 3657–3663 (2008)CrossRefGoogle Scholar
  3. 3.
    Paclík, P., Leitner, R., Duin, R.P.W.: A study on design of object sorting algorithms in the industrial application using hyperspectral imaging. J. Real-Time Image Proc. 1, 101–108 (2006)CrossRefGoogle Scholar
  4. 4.
    Van der Meer, F.: The effectiveness of spectral similarity measures for the analysis of hyperspectral imagery. Int. J. Appl. Earth Obs. Geoinf. 8, 3–17 (2006)CrossRefGoogle Scholar
  5. 5.
    Ingle, J.D.J., Crouch, S.R.: Spectrochemical Analysis. Prentice Hall, New Jersey (1988)Google Scholar
  6. 6.
    GBC UV-Visible Cintra 101/202/303/404 Spectrometer Operation Manual. GBC Scientific Equipment Pty Ltd., Australia, GBC part number: 01-0831-01 (2005)Google Scholar
  7. 7.
    Kruse, F.A., Lefkoff, A.B., Boardman, A.B., Heidebrecht, K.B., Shapiro, A.T., Barloon, P.J., Goetz, A.F.H.: The Spectral Image Processing System (SIPS) - interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 44, 145–163 (1993)Google Scholar
  8. 8.
    Van der Meer, F., Bakker, W.: Cross correlogram spectral matching (CCSM): application to surface mineralogical mapping using AVIRIS data from Cuprite, Nevada. Remote Sensing Environ. 61(3), 371–382 (1997)CrossRefGoogle Scholar
  9. 9.
    Chang, C.-I.: An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis. IEEE Trans. Inf. Theory 46, 1927–1932 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Yingzi, D., Chein, I.C., Hsuan, R., Chein-Chi, C., James, O.J., Francis, M.D.A.: New hyperspectral discrimination measure for spectral characterization. Opt. Eng. 43, 1777–1786 (2004)CrossRefGoogle Scholar
  11. 11.
    Homayouni, S., Michel, R.: Hyperspectral image analysis for material mapping using spectral matching. In: Proceedings of the XX ISPRS Congress, Proceedings volume IAPRS, Istanbul, July 12-23, vol. XXXV (2004)Google Scholar
  12. 12.
    Robila, S.A., Gershman, A.: Spectral matching accuracy in processing hyperspectral data. In: International Symposium on Signals, Circuits and Systems (ISSCS 2005), pp. 163–166 (2005)Google Scholar
  13. 13.
    Fawcett, T.: An introduction to ROC analysis. Pattern Recognit. Lett. 27, 861–874 (2006)CrossRefGoogle Scholar
  14. 14.
    de Carvalho, O.A., Meneses, P.R.: Spectral Correlation Mapper (SCM): An Improvement on the Spectral Angle Mapper (SAM). In: NASA JPL AVIRIS Wkshp. (2000)Google Scholar
  15. 15.
    Kuncheva, L.I.: Combining pattern classifiers: methods and algorithms. Wiley Interscience, Hoboken (2004)CrossRefzbMATHGoogle Scholar
  16. 16.
    Devroye, L., Gyorfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition. Springer, New York (1996)CrossRefzbMATHGoogle Scholar
  17. 17.
    Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition, 2nd edn. Springer, London (2009)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Andrés Eduardo Gutiérrez-Rodríguez
    • 1
  • Miguel Angel Medina-Pérez
    • 1
  • José Fco. Martínez-Trinidad
    • 2
  • Jesús Ariel Carrasco-Ochoa
    • 2
  • Milton García-Borroto
    • 1
    • 2
  1. 1.Centro de BioplantasCiego de ÁvilaCuba
  2. 2.Instituto Nacional de AstrofísicaÓptica y ElectrónicaSta. María TonanzintlaMéxico

Personalised recommendations