A Learning Social Network with Recognition of Learning Styles Using Neural Networks

  • Ramón Zatarain-Cabada
  • M. L. Barrón-Estrada
  • Viridiana Ponce Angulo
  • Adán José García
  • Carlos A. Reyes García
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6256)

Abstract

The implementation of an adaptive learning social network to be used as an authoring tool, is presented in this paper. With this tool, adaptive courses, intelligent tutoring systems and lessons can be created, displayed and shared in collaborative and mobile environments by communities of instructors and learners. The Felder-Silverman model is followed to tailor courses to the student’s learning style. Self Organizing Maps (SOM) are applied to identify the student’s learning style. The introduction of a social learning network to create, view and manage adaptive intelligent tutoring systems, and a novel method to identify the student’s learning style, are the contributions of this paper.

Keywords

Adaptive mobile learning Social learning networks Authoring tools Learning Styles SOM 

References

  1. 1.
  2. 2.
    Ivanova, M.: Knowledge Building and Competence Development in eLearning 2.0 Systems. In: I-KNOW’08, Graz, Austria, September 3-5, pp. 84–91 (2008)Google Scholar
  3. 3.
    Murray, T., Blessing, S., Ainsworth, S.: Authoring Tools for Advanced Technology Learning Environments. Kluwer Academic Publishers, Dordrecht (2003)CrossRefGoogle Scholar
  4. 4.
    Jong, T., de Limbach, R., Gellevij, M., Kuyper, M., Pieters, J., Joolingen, W.R.: Cognitive tools to support the instructional design of simulation-based discovery learning environment: the SIMQUEST authoring system. In: Plomp, T., van den Akker, J., Nieveen, N., Gustafson, K. (eds.), pp. 215–224. Kluwer Academic Publishers, The Netherlands (1999)Google Scholar
  5. 5.
    Arruarte, A., Fernández, I., Ferrero, B., Greer, J.: The IRIS Shell: How to build ITSs from Pedagogical and Design Requisites. International Journal of Artificial Intelligence in Education 8, 341–381 (1997)Google Scholar
  6. 6.
    Brusilovsky, P., Schwarz, E.: Web-based education for all: A tool for developing adaptive courseware. Computer Networks and ISDN Systems 30(1-7), 291–300 (1998)CrossRefGoogle Scholar
  7. 7.
    Carmona, C., Castillo, G., Millán, E.: Designing a Bayesian Network for Modeling Student’s Learning Styles. In: Díaz, P., Kinshuk, Aedo, I., Mora, E. (eds.) ICALT 2008, pp. 346–350. IEEE Computer Society, Los Alamitos (2008)Google Scholar
  8. 8.
    Graf, S., Kinshuk, Liu, T.: Identifying Learning Styles in Learning Management Systems by Using Indications from Students’ behavior. In: Díaz, P., Kinshuk, Aedo, I., Mora, E. (eds.) ICALT 2008, pp. 482–486. IEEE Computer Society, Los Alamitos (2008)Google Scholar
  9. 9.
    Limongelli, C., Sciarrone, F., Vaste, J.: LS-PLAN: An Effective Combination of Dynamic Courseware Generation and Learning Styles in Web-based Education. In: Nejdl, W., Kay, J., Pu, P., Herder, E. (eds.) AH 2008. LNCS, vol. 5149, pp. 133–142. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Zatarain-Cabada, R., Barrón-Estrada, M.L., Sandoval, G., Osorio, M., Urías, E., Reyes-García, C.A.: Authoring Neuro-fuzzy Tutoring Systems for M and E-Learning. In: Aguirre, A.H., Borja, R.M., Reyes-García, C.A. (eds.) MICAI 2008. LNCS (LNAI), vol. 5317, pp. 789–796. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Attewell, J.: Mobile technologies and learning: A technology update and mlearning project summary. Learning and Skills Development, http://www.m-learning.org/reports.shtml
  12. 12.
    Romero, C., Ventura, S., Hervás, C., De Bra, P.: An Authoring Tool for Building Both Mobile Adaptable Tests and Web-Based Adaptive or Classic Tests. In: Wade, V.P., Ashman, H., Smyth, B. (eds.) AH 2006. LNCS, vol. 4018, pp. 203–212. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Attewell, J.: From Research and Development to Mobile Learning: Tools for Education and Training Providers and their Learners, http://www.mlearn.org.za/CD/papers/Attewell.pdf
  14. 14.
    Felder, R.M., Solomon, B.A.: Index of Learning Styles Questionnaire, http://www.engr.ncsu.edu/learningstyles/ilsweb.html
  15. 15.
    Felder, R.M., Silverman, L.K.: Learning and Teaching Styles in Engineering Education. Engineering Education 78, 674–681 (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ramón Zatarain-Cabada
    • 1
  • M. L. Barrón-Estrada
    • 1
  • Viridiana Ponce Angulo
    • 1
  • Adán José García
    • 1
  • Carlos A. Reyes García
    • 2
  1. 1.Instituto Tecnológico de CuliacánCuliacán SinaloaMéxico
  2. 2.Óptica y Electrónica (INAOE)Instituto Nacional de AstrofísicaPueblaMéxico

Personalised recommendations