Adaboost Classifier by Artificial Immune System Model

  • Hind Taud
  • Juan Carlos Herrera-Lozada
  • Jesús Álvarez-Cedillo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6256)


An algorithm combining Artificial Immune System and AdaBoost called Imaboost is proposed to improve the feature selection and classification performance. Adaboost is a machine learning technique, which generates a strong classifier as a combination of simple classifiers. In Adaboost, through learning, the search for the best simple classifiers is replaced by the clonal selection algorithm. Haar features extracted from face database are chosen as a case study. A comparison between Adaboost and Imaboost is provided.


Artificial immune system Feature selection Adaboost Clonal selection algorithm Haar Features 


  1. 1.
    Viola, P., Jones, M.: Rapid object detection using boosted cascade of simple features. In: Proceedings IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Hawaii, vol. 1, pp. 511–518 (2001)Google Scholar
  2. 2.
    Viola, P., Jones, M.: Robust Real-Time Face Detection. International Journal of Computer Vision 57(2), 137–154 (2004)CrossRefGoogle Scholar
  3. 3.
    Zheng, L., He, X.: Classification Techniques in Pattern Recognition. In: Proceedings of the 13th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, Bory, pp. 77–79 (2005)Google Scholar
  4. 4.
    Lienhart, R., Maydt, J.: An extended set of haar-like features for rapid object detection. In: IEEE ICIP2, New York, vol. 1, pp. 900–903 (2002)Google Scholar
  5. 5.
    Li, S.Z., Zhang, Z.: FloatBoost Learning and Statistical Face Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(9), 1112–1123 (2004)CrossRefGoogle Scholar
  6. 6.
    Zhang, W., Tong, R., Dong, J.: Z-AdaBoost: Boosting 2-Thresholded Weak Classifiers for Object Detection. In: IITA08 Second International Symposium on Intelligent Information Technology Application, Shanghai, vol. 2, pp. 839–844 (2008)Google Scholar
  7. 7.
    Chang, W.S., Lee, J.S.: Segment-Boost Learning for Facial Feature Selection. In: Proceedings of the Third International Conference on Convergence and Hybrid Information Technology, vol. 1, pp. 358–363 (2008)Google Scholar
  8. 8.
    Treptow, A., Zell, A.: Combining Adaboost Learning and Evolutionary Search to select Features for Real-Time Object Detection. In: CEC 2004 Congress on Evolutionary Computation, vol. 2, pp. 2107–2113 (2004)Google Scholar
  9. 9.
    Zin, Z.M., Khalid, M., Yusof, R.: Enhanced Feature Selections OF Adaboost training for face detection using genetic algorithm (gaboost). In: Proceedings of the Third IASTED International Association of Science and Technology For Development, Alberta, pp. 34–39 (2007)Google Scholar
  10. 10.
    Jang, J.S., Kim, J.H.: Evolutionary Prunning for Fast and Robust Face Detection. In: CEC 2006 IEEE Congress on Evolutionary Computation, Vancouver, pp. 1293–1299 (2006)Google Scholar
  11. 11.
    Chouaib, H., Ramos Terrades, O., Tabbone, S., Cloppet, F., Vincent, N.: Feature selection combining genetic algorithm and Adaboost classifiers. In: 19th International Conference on Pattern Recognition (ICPR), Tampa, pp. 1–4 (2008)Google Scholar
  12. 12.
    Li, R., Lu, J., Zhang, Y., Zhao, T.: Dynamic Adaboost learning with feature selection based on parallel genetic algorithm for image annotation. Knowledge-Based Systems 23(3), 195–201 (2010)CrossRefGoogle Scholar
  13. 13.
    Tan, K.C., Goh, C.K., Mamun, A.A., Ei, E.Z.: An evolutionary artificial immune system for multi-objective optimization. European Journal of Operational Research 187(2), 371–392 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Carter, J.H.: The immune system as a model for pattern recognition and classification. Journal of the American Medical Informatics Association 7(1), 28–41 (2000)CrossRefGoogle Scholar
  15. 15.
    Hunt, J.E., Cook, D.E.: Learning using an artificial immune system. Journal of Network and Computer Applications 19, 189–212 (1996)CrossRefGoogle Scholar
  16. 16.
    De Castro, L.N., Leandro, N.: Timmis, Jonathan Artificial Immune Systems: A New Computational Intelligence Approach. Springer, Heidelberg (2002)Google Scholar
  17. 17.
    De Castro, L.N., Von Zuben, F.J.: The clonal selection algorithm with engineering applications. In: Workshop Proceedings of GECCO’00, Workshop on Artificial Immune Systems and their Applications, Las Vegas, pp. 36–37 (2000)Google Scholar
  18. 18.
    Freund, Y., Schapire, R.E.: A Short Introduction to Boosting. Journal of Japanese Society for Artificial Intelligence 14(5), 771–780 (1999)Google Scholar
  19. 19.
    Crow, F.C.: Summed-area tables for texture mapping. In: SIGGRAPH ’84 Proceedings of the 11th annual conference on Computer graphics and interactive techniques, pp. 207–212. ACM Press, New York (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Hind Taud
    • 1
  • Juan Carlos Herrera-Lozada
    • 2
  • Jesús Álvarez-Cedillo
    • 1
  1. 1.Centro de Innovación y Desarrollo Tecnológico en CómputoInstituto Politécnico NacionalMadero
  2. 2.Centro de Investigación en ComputaciónInstituto Politécnico NacionalMadero

Personalised recommendations