Measurement of Defocus Level in Iris Images Using Different Convolution Kernel Methods

  • J. Miguel Colores-Vargas
  • Mireya S. García-Vázquez
  • Alejandro A. Ramírez-Acosta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6256)

Abstract

During the video and fixed image acquisition procedure of an automatic iris recognition system, it is essential to acquire focused iris images. If defocus iris images are acquired, the performance of the iris recognition is degraded, because iris images don’t have enough feature information. Therefore it’s important to adopt the image quality evaluation method before the image processing. In this paper, it is analyzed and compared four representative quality assessment methods on the MBGC iris database. Through methods, it can fast grade the images and pick out the high quality iris images from the video sequence captured by real-time iris recognition camera. The experimental results of the four methods according to the receiver operating characteristic (ROC) curve are shown. Then the optimal method of quality evaluation that allows better performance in an automatic iris recognition system is founded. This paper also presents an analysis in terms of computation speed of the four methods.

Keywords

Convolution kernel defocus iris quality video 

References

  1. 1.
    Gamassi, M., Lazzaroni, M., Misino, M., Piuri, V.: Quality assessment of biometric systems: a comprehensive perspective based on accuracy and performance measurement. IEEE Transactions on Instrumentation and Measurement 54, 1489–1496 (2005)CrossRefGoogle Scholar
  2. 2.
    Chen, Y., Dass, S.C., Jain, A.K.: Localized iris image quality using 2-D wavelets. In: Zhang, D., Jain, A.K. (eds.) ICB 2005. LNCS, vol. 3832, pp. 373–381. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Kalka, N.D., Zuo, J., Schmid, N.A., Cukic, B.: Image quality assessment for iris biometric. In: SPIE 6202: Biometric Technology for Human Identification III, vol. 6202, pp. D1–D11 (2006)Google Scholar
  4. 4.
    Zuo, J., Schmid, N.A.: Global and local quality measures for NIR iris video. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2009, pp. 120–125 (2009)Google Scholar
  5. 5.
    Zhu, X.-D., Liu, Y.-N., Ming, X.: A quality evaluation method of iris images sequence based on wavelet coefficients in region of interest. In: CIT ’04: Proceedings of the The Fourth International Conference on Computer and Information Technology, Washington, DC, USA, pp. 24–27. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  6. 6.
    Ma, L., Tan, T., Wang, Y.: Personal identification based on iris texture analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(12), 1519–1533 (2003)CrossRefGoogle Scholar
  7. 7.
    Zhang, G., Salganicoff, M.: Method of measuring the focus of close-up image of eyes. Tech. Rep. 5953440, United States Patent (1999)Google Scholar
  8. 8.
    Daugman, J.G.: How iris recognition works. IEEE Trans. Circ. Syst. Video Tech. 14(1), 21–30 (2004)CrossRefGoogle Scholar
  9. 9.
    Wei, Z., Tan, T., Sun, Z., Cui, J.: Robust and Fast Assessment of Iris Image Quality. In: Zhang, D., Jain, A.K. (eds.) ICB 2005. LNCS, vol. 3832, pp. 464–471. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Wang, J., He, X., Shi, P.: An Iris Image Quality Assessment Method Based on Laplacian of Gaussian Operation. In: MVA2007 IAPR Conference on Machine Vision Applications, Tokyo, Japan, May 16-18, pp. 248–251 (2007)Google Scholar
  11. 11.
    Kang, B.J., Park, K.R.: A study on iris image restoration. In: International Conference on Audio- and Video-Based Biometric Person Authentication, pp. 31–40 (2005)Google Scholar
  12. 12.
    Burges, J.C.: A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery 2, 121–167 (1998)CrossRefGoogle Scholar
  13. 13.
    Multiple Biometric Grand Challenge, face.nist.gov/mbgc/
  14. 14.
    Jonathon Phillips, P., Bowyer, K.W., Flynn, P.J., Liu, X., Todd Scruggs, W.: The Iris Challenge Evaluation 2005. In: Biometrics: Theory, Applications and Systems, Washington, DC (September 2008)Google Scholar
  15. 15.
    CASIA iris image database, http://www.sinobiometrics.com
  16. 16.
    National Institute of Standards and Technology (NIST). Iris Challenge Evaluation (2008), iris.nist.gov/ice/
  17. 17.
    Proença, H., Alexandre, L.A.: UBIRIS: A noisy iris image database. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 970–977. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Masek, L.: Recognition of human iris patterns for biometric identification. Master’s thesis, University of Western Australia (2003)Google Scholar
  19. 19.
    Daugman, J.G.: How Iris Recognition Works. IEEE Trans. on Circuits and Systems for Video Technology 14(1), 21–30 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • J. Miguel Colores-Vargas
    • 1
  • Mireya S. García-Vázquez
    • 1
  • Alejandro A. Ramírez-Acosta
    • 2
  1. 1.Instituto Politécnico Nacional-CITEDITijuana
  2. 2.MIRAL R&DImperial BeachUSA

Personalised recommendations