Advertisement

Fingerprint Verification with Non-linear Composite Correlation Filters

  • Saúl Martínez-Díaz
  • Javier A. Carmona-Troyo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6256)

Abstract

Fingerprint recognition has been used from many years for identification of persons. However, conventional fingerprint recognition systems might fail with poor quality, noisy or rotated images. Recently, novel non-linear composite filters for correlation-based pattern recognition have been introduced. The filters are designed with information from distorted versions of reference object to achieve distortion-invariant recognition. Besides, a non-linear correlation operation is applied among the filter and the test image. These kinds of filters are robust to non-Gaussian noise. In this paper we apply non-linear composite filters for fingerprint verification. Computer simulations show performance of proposed filters with distorted fingerprints. In addition, in order to illustrate robustness to noise, filters were tested with noisy images.

Keywords

Fingerprint verification nonlinear filters correlation filters pattern recognition 

References

  1. 1.
    Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer, London (2009)CrossRefzbMATHGoogle Scholar
  2. 2.
    Jain, A.K., Prabhakar, S., Hong, L., Pankanti, S.: Filterbank-Based Fingerprint Matching. IEEE T. on Image Process. 9, 846–859 (2000)CrossRefGoogle Scholar
  3. 3.
    Ross, A., Reisman, J., Jain, A.: Fingerprint Matching Using Feature Space Correlation. In: Tistarelli, M., Bigun, J., Jain, A.K. (eds.) ECCV 2002. LNCS, vol. 2359, pp. 48–57. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Cappelli, R., Maio, D., Maltoni, D., Nanni, L.: A Two-Stage Fingerprint Classification System. In: Workshop on Biometrics Methods and Applications, pp. 95–99. ACM, California (2003)Google Scholar
  5. 5.
    Venkataramani, K., Vijaya-Kumar, B.V.K.: Fingerprint Verification Using Correlation Filters. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 886–894. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    VanderLugt, A.B.: Signal Detection by Complex Filtering. IEEE Trans. Inf. Theory. 10, 135–139 (1964)Google Scholar
  7. 7.
    Hester, C.F., Casasent, D.: Multivariant Technique for Multiclass Pattern Recognition. Appl. Opt. 19, 1758–1761 (1980)CrossRefGoogle Scholar
  8. 8.
    Mahalanobis, A., Vijaya-Kumar, B.V.K., Casasent, D.: Minimum Average Correlation Energy Filters. Appl. Opt. 31, 1823–1833 (1987)Google Scholar
  9. 9.
    Refregier, P.: Filter Design for Optical Pattern Recognition: Multicriteria Optimization Approach. Optical Society of America 15, 854–856 (1990)MathSciNetGoogle Scholar
  10. 10.
    Maragos, P.: Morphological Correlation and Mean Absolute Error Criteria. In: Proc. Conf. IEEE Trans. Acoust. Speech Signal Process., pp. 1568–1571 (1989)Google Scholar
  11. 11.
    Kober, V., Alvarez-Borrego, J., Ovseyevich, I.A.: Adaptive Rank Order Correlations. Pattern Recognition and Image Analysis 14, 33–39 (2004)Google Scholar
  12. 12.
    Martínez-Díaz, S., Kober, V.: Nonlinear Synthetic Discriminant Function Filters for Illumination-Invariant Pattern Recognition. Opt. Eng. 47, 067201 (2008)CrossRefGoogle Scholar
  13. 13.
    Fitch, J.P., Coyle, E.J., Gallagher Jr., N.C.: Median Filtering by Threshold Decomposition. IEEE Trans. Acoust. Speech Signal Process., 1183–1188 (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Saúl Martínez-Díaz
    • 1
  • Javier A. Carmona-Troyo
    • 1
  1. 1.División de Estudios de Posgrado e InvestigaciónInstituto Tecnológico de La PazLa Paz BCSMéxico

Personalised recommendations