Skip to main content

A Novel Method for Simulating Cancer Growth

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6350))

Abstract

We propose probabilistic cellular automata on a square lattice for simulating the dynamic of cancer growth in a reaction-diffusion frame. In the reaction step each cancerous cell can proliferate, be quiescent, or die due to apoptosis or necrosis phenomenon. The three-state Potts model is used for calculating the probabilities in the reaction step. We consider the effect of nutrient in the tumor growth in order to improve the precision of the model. We use a simple and suitable method for the diffusion step to simplify movement of cells and nutrient in the model. In the diffusion step the lattice is partitioned by 3×3 blocks. In each block we count the number of different types of cells and redistribute them in the block. In the next time step, each block will be shifted one row down and one column to the right and the operation will be continued. The redistribution step for nutrient molecules is same as cells. It is shown tumor growths asymmetrically toward nutrient source. It has been shown such a simple model could simulate tumor growth with good accuracy, which is based on the well known physical ground i.e. the three-state Potts model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Knowles, M.A., Selby, P.J.: Introduction to the Cellular and Molecular Biology of Cancer, 4th edn. Oxford University Press, Oxford (2005)

    Google Scholar 

  2. Matzavinos, A., Chaplain, M.A.J.: Mathematical modelling of the spatio-temporal response of cytotoxic T-lymphocytes to a solid tumour. Mathematical Medicine and Biology 21, 1–34 (2004)

    Article  MATH  Google Scholar 

  3. Gerlee, P., Anderson, A.R.A.: An evolutionary hybrid cellular automaton model of solid tumor growth. J. Theoretical Biology 246(4), 583–603 (2007)

    Article  MathSciNet  Google Scholar 

  4. Khain, E., Sander, L.M.: Dynamics and pattern formation in invasive tumor growth. Physical Review Letters 96, 188103 (2006)

    Article  Google Scholar 

  5. Marciniak-Czochraa, A., Kimmel, M.: Reaction–diffusion approach to modeling of the spread of early tumors along linear or tubular structures. J. Theoretical. Biology 244, 375–387 (2007)

    Article  MathSciNet  Google Scholar 

  6. Ferreira, S.C., Martins, M.L., Vilela, M.J.: Reaction-diffusion model for the growth of avascular tumor. Phys. Rev. E 65, 021907 (2002)

    Article  MathSciNet  Google Scholar 

  7. Adam, J.A., Bellomo, N.: A Survey of Models for Tumor-Immune System Dynamics, Birkhäuser, Boston (1997)

    Google Scholar 

  8. Dormann, S., Deutsch, A.: Modeling of self-organized avascular tumor growth with a hybrid cellular automaton. Silico Biology 2, 0035 (2002)

    Google Scholar 

  9. Wolfram, S.: A new kind of science. Wolfram Media Inc., Champaign (2001)

    MATH  Google Scholar 

  10. Wolf-Gladrow, D.A.: Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction. Springer, Heidelberg (2000)

    Book  MATH  Google Scholar 

  11. Ghaemi, M., Shahrokhi, A.: Combination of the Cellular Potts Model and Lattice Gas Cellular Automata for Simulating the Avascular Cancer Growth. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 297–303. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Glauber, R.J.: Time-Dependent Statistics of the Ising Model. J. Math. Phys. 4, 294 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wu, F.: The Potts-model. Rev. Mod. Phys. 54, 235–268 (1982)

    Article  MathSciNet  Google Scholar 

  14. Vanag, V.K.: Study of spatially extended dynamical systems using probabilistic cellular automata. J. Pysics-Uspekhi 42(5), 413–434 (1999)

    Article  Google Scholar 

  15. Piotrowska, M.J., Angus, S.D.: A quantitative cellular automaton model of in vitro multicellular spheroid tumour growth. J. Theoretical Biology 258(2), 165–178 (2009)

    Article  Google Scholar 

  16. Calabresi, P., Schein, P.E.: Medical oncology, 2nd edn. Mc Graw-Hill, New York (1993)

    Google Scholar 

  17. Ganong, W.F.: Review of medical physiology, 19th edn. Appleton and Lang, New York (1993)

    Google Scholar 

  18. Christley, S., Zhu, X., Newman, S.A., Alber, M.S.: Multiscale Agent-Based Simulation for Chondrogenic Pattern Formation In Vitro. Cybernetics and Systems: An International Journal 38, 707–727 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ghaemi, M., Naderi, O., Zabihinpour, Z. (2010). A Novel Method for Simulating Cancer Growth . In: Bandini, S., Manzoni, S., Umeo, H., Vizzari, G. (eds) Cellular Automata. ACRI 2010. Lecture Notes in Computer Science, vol 6350. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15979-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15979-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15978-7

  • Online ISBN: 978-3-642-15979-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics