Skip to main content

Benefits of Full-Reinforcement Operators for Spacecraft Target Landing

  • Chapter
Preferences and Decisions

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 257))

Abstract

In this paper we discuss the benefits of using full reinforcement operators for site selection in spacecraft landing on planets. Specifically we discuss a modified Uninorm operator for evaluating sites and a Fimica operator to aggregate pixels for constructing regions that will act as sites to be selected at lower spacecraft altitude. An illustrative case study of spacecraft target landing is presented to clarify the details and usefulness of the proposed operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fodor, J.C., Yager, R.R., Rybalov, A.: Structure of uninorms. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems 5(4), 411–427 (1997)

    Article  MathSciNet  Google Scholar 

  2. Yager, R.R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets and Systems 80(1), 111–120 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Yager, R.R., Rybalov, A.: Full Reinforcement Operators in Aggregation Techniques. IEEE Systems, Man and Cybernetics, Part B 28(6) (1998)

    Google Scholar 

  4. Diederich, A.: Dynamic stochastic models for decision making under time constraints. Journal of Mathematical Psychology 41(3), 260–274 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Khanmohammadi, S., Riberiro, R.A., Jassbi, J.: Multi criteria decision making using dynamics of criteria. In: Proceedings of the 11th Mediterranean Conference on Control and Automation, MED 2003 (2003)

    Google Scholar 

  6. Townsend, J.T., Busemeyer, J.: Dynamic representation of decision-making. In: Port, R., Gelder, T.V. (eds.) Mind in Motion: Dynamics, Behavior and Cognition, pp. 101–120 (1995)

    Google Scholar 

  7. Ribeiro, R.A., Pais, T.C.: Reinforcement Operators in Spacecraft Landing. In: Proceedings of the 5th Workshop on Preferences and Decisions, Trento, Italy (2009)

    Google Scholar 

  8. Beliakov, G., Warren, J.: Appropriate choice of aggregation operators in fuzzy decision support systems. IEEE Transactions on Fuzzy Systems 9(6), 773–784 (2001)

    Article  Google Scholar 

  9. Zimmermann, H.J.: Fuzzy Set Theory - and its applications, 3rd edn. Kluwer Academic Publishers, Dordrecht (1996)

    MATH  Google Scholar 

  10. Richardson, G.P., Pugh, A.L.: Introduction to system dynamics modeling with DYNAMO. Journal of the Operational Research Society 48(11), 1146 (1997)

    Article  Google Scholar 

  11. Detyniecki, M.: Fundamentals on Aggregation Operators. In: AGOP, Asturias (2001)

    Google Scholar 

  12. Devouassoux, Y., et al.: Hazard avoidance developments for planetary exploration. In: 7th International ESA Conference on Guidance, Navigation & Control Systems (2008)

    Google Scholar 

  13. Pais, T.C., et al.: Regions rating for selecting spacecraft landing sites. In: Ruan, D., Montero, J., Lu, J., Martinez, L., D’hondt, P., Kerre, E.E. (eds.) Computational Intelligence in Decision and Control - Proceedings of the 8th International FLINS Conference. World Scientific Proceeding Series on Computer Engineering and Information Science, vol. 1, pp. 1039–1044 (2008)

    Google Scholar 

  14. Pais, T.C., et al.: Dynamic ranking algorithm for landing site selection. In: Proceedings of the 12th International Conference on Information Processing and Management of Uncertainty in Knowledge-Base Systems, IPMU (2008)

    Google Scholar 

  15. Yager, R.R.: Aggregation operators and fuzzy systems modeling. Fuzzy Sets and Systems 67, 129–146 (1996)

    Article  MathSciNet  Google Scholar 

  16. Yager, R.R.: Ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Trans. on Systems, Man and Cybernetics 18(1), 636–643 (1988)

    Article  MathSciNet  Google Scholar 

  17. Calvo, T., Mayor, G., Mesiar, R. (eds.): Aggregation Operators: New Trends and Applications. Studies in Fuzziness and Soft Computing, vol. 97. Physica-Verlag, Heidelberg (2002)

    MATH  Google Scholar 

  18. Figueira, J., Greco, S., Ehrgott, M. (eds.): Multiple Criteria Decision Analysis: State of the Art Surveys. Kluwer Academic Publishers, Dordrecht (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ribeiro, R.A., Pais, T.C., Simões, L.F. (2010). Benefits of Full-Reinforcement Operators for Spacecraft Target Landing. In: Greco, S., Marques Pereira, R.A., Squillante, M., Yager, R.R., Kacprzyk, J. (eds) Preferences and Decisions. Studies in Fuzziness and Soft Computing, vol 257. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15976-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15976-3_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15975-6

  • Online ISBN: 978-3-642-15976-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics