Skip to main content

Multiobjective Design Optimization of 3–PRR Planar Parallel Manipulators

  • Conference paper
  • First Online:
Book cover Global Product Development

Abstract

This chapter addresses the dimensional synthesis of parallel kinematics machines. A multiobjective optimization problem is proposed in order to determine optimum structural and geometric parameters of parallel manipulators. The proposed approach is applied to the optimum design of a three-degree-of-freedom planar parallel manipulator in order to minimize the mass of the mechanism in motion and to maximize its regular shaped workspace.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hay, A.M., Snyman, J.A. (2004) Methodologies for the optimal design of parallel manipulators. International Journal for Numerical Methods in Engineering, 59(11):131–152.

    Article  MathSciNet  MATH  Google Scholar 

  2. Merlet, J.P. (2006) Parallel Robots. Kluwer, Norwell, MA.

    MATH  Google Scholar 

  3. Lou, Y., Liu, G., Chen, N., Li, Z. (2005) Optimal design of parallel manipulators for maximum effective regular workspace. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Alberta, pp. 795–800.

    Google Scholar 

  4. Lou, Y., Liu, G., Li, Z. (2008) Randomized optimal design of parallel manipulators. IEEE Transactions on Automation Science and Engineering, 5(2):223–233,.

    Article  Google Scholar 

  5. Ottaviano, E., Ceccarelli, M. (May 2000) Workspace and optimal design of a pure translation parallel manipulator-tsai manipulator. Meccanica, 35(3):203–214.

    Article  Google Scholar 

  6. Ottaviano, E., Ceccarelli, M. (2001) Optimal design of capaman (cassino parallel manipulator) with prescribed workspace. 2nd Workshop on Computational Kinematics KC2001, Seoul, South Korea, pp. 35–43.

    Google Scholar 

  7. Hao, F., Merlet, J.-P. (2005) Multi-criteria optimal design of parallel manipulators based on interval analysis. Mechanism and Machine Theory, 40(2):157–171.

    Article  MATH  Google Scholar 

  8. Ceccarelli, M., Carbone, G., Ottaviano, E. (2005) Multi criteria optimum design of manipulators. In Bulletin of the Polish Academy of Technical Sciences, 53(1):9–18.

    Google Scholar 

  9. Gosselin, C.M., Angeles, J. (1988) The optimum kinematic design of a planar three-degree-of-freedom parallel manipulator. ASME Journal of Mechanisms, Transmission and Automation in Design, 110:35–41.

    Article  Google Scholar 

  10. Gosselin, C.M., Angeles, J. (1989) The optimum kinematic design of a spherical three-degree-of-freedom parallel manipulator. Journal of Mechanisms, Transmissions and Automation in Design, 111(2):202–207.

    Article  Google Scholar 

  11. Pham, H.H., Chen, I.-M. (2003) Optimal synthesis for workspace and manipulability of parallel flexure mechanism. Proceeding of the 11th World Congress in Mechanism and Machine Science, Tianjin, China, April 1–4 2003, pp 2069–2073.

    Google Scholar 

  12. Stamper, R.E., Tsai, L.-W., Walsh, G.C. (1997) Optimization of a three-dof translational platform for well-conditioned workspace. Proceedings of the IEEE International Conference on Robotics and Automation, New Mexico, pp. 3250–3255.

    Google Scholar 

  13. Stock, M., Miller, K. (2003) Optimal kinematic design of spatial parallel manipulators: Application of linear delta robot. Transactions of the ASME, Journal of Mechanical Design, 125(2):292–301.

    Article  Google Scholar 

  14. Menon, C., Vertechy, R., Markot, M.C., Parenti-Castelli, V. (February 2009) Geometrical optimization of parallel mechanisms based on natural frequency evaluation: application to a spherical mechanism for future space applications. IEEE Transactions on Robotics, 25(1):12–24.

    Article  Google Scholar 

  15. Li, H., Yang, Z., Huang, T. (2009) Dynamics and elasto-dynamics optimization of a 2-dof planar parallel pick and place robot with flexible links. Journal of Structural and Multidisciplinary Optimization, 38(2):195–204.

    Article  Google Scholar 

  16. Krefft, M., Hesselbach, J. (2005) Elastodynamic optimization of parallel kinematics. Proceedings of the IEEE International Conference on Automation Science and Engineering, Edmonton, AB, Canada, Aug 1–2 2005.

    Google Scholar 

  17. Chablat, D., Wenger, P. (2003) Architecture optimization of a 3-dof parallel mechanism for machining applications, the orthoglide. IEEE Transactions On Robotics and Automation, 19(3):403–410.

    Article  Google Scholar 

  18. Chablat, D., Wenger, Ph., Caro, S., Angeles, J. (2002) The isoconditioning loci of planar 3-dof parallel manipulator. Proceedings of DETC’2002, ASME Design Engineering Technical Conference, Montreal, QC, Canada, 29 Sep–2 Oct 2002.

    Google Scholar 

  19. Chablat, D., Wenger, P. (May 1998) Working modes and aspects in fully parallel manipulators. Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1964–1969.

    Google Scholar 

  20. Gosselin, C.M., Merlet, J.P. (1994) The direct kinematics of planar parallel manipulators: special architectures and number of solutions. Mechanism and Machine Theory, 29(8):1088–1097.

    Article  Google Scholar 

  21. Pashkevich, A., Chablat, D., Wenger, P. (2009) Stiffness analysis of overconstrained parallel manipulators. Mechanism and Machine Theory, 44(5):966–982.

    Article  MATH  Google Scholar 

  22. Pashkevich, A., Chablat, D., Wenger, P. (2009) Design optimization of parallel manipulators for high-speed precision machining application. 13th IFAC Symposium on Information Control Problems in Manufacturing, Moscow, Russia, 3–5 June 2009.

    Google Scholar 

  23. Liu, X.J., Wang, J., Oh, K.K., Kim, J. (February 2004) A new approach to the design of a delta robot with a desired workspace. Journal of Intelligent and Robotic Systems, 39(2):209–225.

    Article  Google Scholar 

  24. Wenger, P., Chablat, D. (2000) Kinematic analysis of a new parallel machine tool: The orthoglide. Proceedings of the 7th International Symposium on Advances in Robot Kinematics, Portoroz, Slovenia.

    Google Scholar 

  25. Li, Z. (1990) Geometrical consideration of robot kinematics singularities. The International Journal of Robotics and Automation, 5(3):139–145.

    Google Scholar 

  26. Paden, B., Sastry, S. (1988) Optimal kinematic design of 6r manipulator. The International Journal of Robotics Research, 7(2):43–61.

    Article  Google Scholar 

  27. Ranjbaran, F., Angeles, J., Gonzalez Palacios, M.A., Patel, R. (1995) The mechanical design of a seven-axes manipulator with kinematic isotropy. ASME Journal of Intelligent and Robotic Systems, 14(1):21–41.

    Article  MATH  Google Scholar 

  28. ESTECO (2008) Modefrontier, version 4.0.3.

    Google Scholar 

  29. Altuzarra, O., Salgado, O., Hernandez, A., Angeles, J. (2009) Multiobjective optimum design of a symmetric parallel schnflies-motion generator. ASME Journal of Mechanical Design, 131(3):031002-1–031002-11.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Caro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Caro, S., Chablat, D., Ur-Rehman, R., Wenger, P. (2011). Multiobjective Design Optimization of 3–PRR Planar Parallel Manipulators. In: Bernard, A. (eds) Global Product Development. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15973-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15973-2_37

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15972-5

  • Online ISBN: 978-3-642-15973-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics