Skip to main content

Fully Automatic Joint Segmentation for Computer-Aided Diagnosis and Planning

  • Conference paper
Machine Learning in Medical Imaging (MLMI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6357))

Included in the following conference series:

  • 1298 Accesses

Abstract

Orthopaedic examinations are a major reason for radiographic image acquisition. For many diagnostic problems measurements have to be computed from the recorded radiographs. As this task is time-consuming and lacks objectivity, it is desirable to perform these measurements automatically via so-called computational imaging. This requires robust and accurate methods trained and proven on clinical data.

We propose a fully automatic technique and present the three complementing stages of our segmentation algorithm. We evaluated the proposed method on more than 200 clinical images and achieve robust and precise delineations, well-suited for automated computation of orthopaedic measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelson, E., Anderson, C.H., Bergen, J.R., Burt, P.J., Ogden, J.M.: Pyramid methods in image processing. RCA Engineer 29(6), 33–41 (1984)

    Google Scholar 

  2. Ballard, D.: Generalizing the hough transform to detect arbitrary shapes. Pattern Recognition 13(2), 111–122 (1981)

    Article  MATH  Google Scholar 

  3. Boewer, M., Arndt, H., Ostermann, P.W., Petersein, J., Mutze, S.: Length and angle measurements of the lower extremity in digital composite overview images. European Radiology 15(1), 158–164 (2005)

    Article  Google Scholar 

  4. Chav, R., Cresson, T., Kauffmann, C., de Guise, J.A.: Method for fast and accurate segmentation processing from prior shape: Application to femoral head segmentation on X-ray images. In: Pluim, J.P.W., Dawant, B.M. (eds.) Medical Imaging, vol. 7259, p. 72594y. SPIE, San Jose (2009)

    Google Scholar 

  5. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models - their training and application. Computer Vision and Image Understanding 61(1), 38–59 (1995)

    Article  Google Scholar 

  6. Gooßen, A., Hermann, E., Gernoth, T., Pralow, T., Grigat, R.R.: Model-based lower limb segmentation using weighted multiple candidates. In: Meinzer, H.-P., Deserno, T.M., Handels, H., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin, pp. 376–380. Springer, Heidelberg (2010)

    Google Scholar 

  7. Gooßen, A., Peters, D., Gernoth, T., Pralow, T., Grigat, R.R.: Intelligent feature selection for model-based bone segmentation in digital radiographs. In: Technology and Applications in Biomedicine, pp. 1–4. IEEE Computer Society Press, Los Alamitos (2009)

    Google Scholar 

  8. Gooßen, A., Schlüter, M., Pralow, T., Grigat, R.R.: A stitching algorithm for automatic registration of digital radiographs. In: Campilho, A., Kamel, M. (eds.) Image Analysis and Recognition, pp. 854–862. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Hankemeier, S., Gosling, T., Richter, M., Hufner, T., Hochhausen, C., Krettek, C.: Computer-assisted analysis of lower limb geometry: higher intraobserver reliability compared to conventional method. Computer Aided Surgery 11(2), 81–86 (2006)

    Article  Google Scholar 

  10. Hoerr, N.L., Pyle, S.I., Francis, C.C.: Radiographic atlas of skeletal development of the foot and ankle, A standard of reference. C. C. Thomas, Springfield (1962)

    Google Scholar 

  11. Pyle, S.I., Hoerr, N.L.: Radiographic Atlas of the skeletal development of the knee, A standard of reference. Blackwell Scientific Publications, Oxford (1955)

    Google Scholar 

  12. Ruppertshofen, H., Lorenz, C., Beyerlein, P., Salah, Z., Rose, G., Schramm, H.: Fully automatic model creation for object localization utilizing the generalized hough transform. In: Meinzer, H.-P., Deserno, T.M., Handels, H., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin, pp. 331–335. Springer, Heidelberg (2010)

    Google Scholar 

  13. Schramm, H., Ecabert, O., Peters, J., Philomin, V., Weese, J.: Towards fully automatic object detection and segmentation. In: Reinhardt, J.M., Pluim, J.P.W. (eds.) Medical Imaging, vol. 6144, p. 614402. SPIE, San Jose (2006)

    Google Scholar 

  14. Viterbi, A.J.: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. on Information Theory 13(2), 260–269 (1967)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gooßen, A., Pralow, T., Grigat, RR. (2010). Fully Automatic Joint Segmentation for Computer-Aided Diagnosis and Planning. In: Wang, F., Yan, P., Suzuki, K., Shen, D. (eds) Machine Learning in Medical Imaging. MLMI 2010. Lecture Notes in Computer Science, vol 6357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15948-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15948-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15947-3

  • Online ISBN: 978-3-642-15948-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics