Skip to main content

Bose-Einstein Condensation

  • Chapter
  • First Online:
  • 2781 Accesses

Part of the book series: Lecture Notes in Physics ((LNP,volume 825))

Abstract

In this Chapter, Wave Turbulence (WT) in Bose-Einstein condensates (BEC) and nonlinear optics is considered. Models considered include 2D and 3D Gross-Pitaevskii equations, Nordheim quantum kinetic equation, Boltzmann equation and 1D nonlinear equation for optical WT in nematic liquid crystals. Roles of the thermodynamic Rayleigh- Jeans, cascading Kolmogorov-Zakharov, mixed warm cascade and critical balance states are discussed. A picture of WT life cycle where a coherent uniform condensate component arises from an inverse cascade process. In this setting the WT starts as a four-wave process followed by breakdown of weakly nonlinear description and creation of a gas of strongly nonlinear vortices which undergo annihilations resulting in a vortex-free coherent condensate with random acoustic Bogoliubov waves engaged in mutual three-wave interactions

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Paper [7] filtered out high k’s at the data processing, but not at the computational stage. Obviously, this could not prevent the backscatter/bottleneck effect discussed here.

  2. 2.

    To be precise, this is a special case of the Boltzmann equation for rigid-sphere particles.

  3. 3.

    The opposite statement about the negative energy flux was made in [17] based on the spectrum \(n=({c}/{\omega}) \ln^{1/3} ({ \omega} )\) thus effectively assuming an IR (rather than an UV) cutoff, which is unnatural because one should not assume a zero spectrum at the forcing scale.

  4. 4.

    The normal component in Helium is representing, on a course-grained level, motion of the gas of phonons.

  5. 5.

    In 1D NLS the solitons pass each other almost freely,—without change of their amplitudes or shapes but with small shifts of the original trajectories.

  6. 6.

    Index x = 0 corresponds to a formal solution with particle equipartition in the momentum space. However, this solution is not normalizable.

References

  1. Bergé, L.: Wave collapse in physics: principles and applications to light and plasma waves. Phys. Rep. 303, 259 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  2. Sulem, C., Sulem, P.: The Nonlinear Schrödinger Equation. Springer, Berlin (1999)

    MATH  Google Scholar 

  3. Gross, E.P.: Nuovo Cimento 20, 454 (1961)

    Google Scholar 

  4. Pitaevskii, L.P.: Zh. Eksp. Teor. Fiz. 40, 646 (1961) [Sov. Phys. JETP 13, 451 (1961)]

    Google Scholar 

  5. Zakharov, V.E., Musher, S.L., Rubenchik, A.M.: Hamiltonian approach to the description of nonlinear plasma phenomena. Phys. Rep. 129, 285 (1985)

    Google Scholar 

  6. Connaughton, C., Josserand, C., Picozzi, A., Pomeau, Y., Rica, S.: Condensation of classical nonlinear waves. Phys. Rev. Lett. 95, 263901 (2005)

    Article  ADS  Google Scholar 

  7. Berloff, N.G., Svistunov, B.V.: Scenario of strongly non-equilibrated Bose-Einstein condensation. Phys. Rev. A 66, 013603 (2002)

    Article  ADS  Google Scholar 

  8. Nordheim, L.W.: On the kinetic method in the new statistics and its application in the electron theory of conductivity. Proc. R. Soc. London Ser. A 119, 689 (1928)

    Article  ADS  MATH  Google Scholar 

  9. Bose-Einstein condensate, Wikipedia

    Google Scholar 

  10. Pitaevskii, L.P., Stringari, S.: Bose-Einstein Condensation, Oxford University Press, International Series of Monographs on Physics No. 116 (2004)

    Google Scholar 

  11. Hohenberg, P.C.: Phys. Rev. 158, 383 (1967)

    Google Scholar 

  12. Mullin, W.J.: J. Low Temp. Phys. 106, 615 (1997)

    Google Scholar 

  13. Nazarenko, S., Onorato, M.: Wave turbulence and vortices in Bose-Einstein condensation. Physica D 219, 1–12 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Nazarenko, S., Onorato, M.: Freely decaying turbulence and Bose-Einstein condensation in Gross-Pitaevski model. J. Low Temp. Phys. 146(1/2), 31–46 (2007)

    Article  ADS  Google Scholar 

  15. Proment, D., Nazarenko, S., Onorato, M.: Bose-Einstein condensation in 2D NLS model (in preparation)

    Google Scholar 

  16. Lvov, Y., Nazarenko, S.V., West, R.J.: Wave turbulence in Bose-Einstein condensates. Physica D 184(1–4), 333–351 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Dyachenko, A., Newell, A.C., Pushkarev, A., Zakharov, V.E.: Optical turbulence: weak turbulence, condensates and collapsing fragments in the nonlinear Schrodinger equation. Physica D 57(1–2), 96 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Kraichnan, R.: Phys. Fluids 10, 1417 (1967)

    Google Scholar 

  19. Nazarenko, S., Onorato M., Proment, D.: Wave turbulence and thermal effects in non-equilibrium Bose-Einstein condensation, (in preparation)

    Google Scholar 

  20. Onorato, M., Proment D., Nazarenko, S.: Nonequilibrium statistics in a forced-dissipated Boltzmann equation (in preparation)

    Google Scholar 

  21. L’vov, V.S., Nazarenko, S.V., Rudenko, O.: Phys. Rev. B 76, 024520 (2007)

    Google Scholar 

  22. Kagan, Y., Svistunov, B.V., Shlyapnikov, G.V.: JETP 75, 387 (1992)

    Google Scholar 

  23. Semikoz, D.V., Tkachev, I.I.: Phys. Rev. Lett. 74, 3093 (1995)

    Google Scholar 

  24. Semikoz, D.V., Tkachev, I.I.: Phys. Rev. D 55, 489 (1997)

    Google Scholar 

  25. Lacaze, R., Lallemand, P., Pomeau, Y., Rica, S.: Physica D 152–153, 779 (2001)

    Google Scholar 

  26. Zakharov, V.E., Nazarenko, S.V.: Dynamics of the Bose-Einstein condensation. Physica D 201, 203–211 (2005)

    Google Scholar 

  27. Bogoliubov, N.: J. Phys. USSR 11, 23 (1947)

    Google Scholar 

  28. Lacaze, R., et al.: Physica D 152, 779 (2001)

    Google Scholar 

  29. Connaughton, C., Pomeau, Y.: C. R. Physique 5, 91 (2004)

    Google Scholar 

  30. Zakharov, V.E., Sagdeev, R.Z.: Spectrum of acoustic turbulence. Soviet Physics: Doklady 15, 439 (1970)

    ADS  MATH  Google Scholar 

  31. Dyachenko, A., Falkovich, G.: Condensate turbulence in two dimensions. Phys. Rev. E 54, 5095 (1996)

    Article  ADS  Google Scholar 

  32. Madelung, E.: Die Mathematischen Hilfsmittel des Physikers. Springer, Berlin (1957)

    MATH  Google Scholar 

  33. Spiegel, A.: Fluid dynamical form of the linear and nonlinear Schrödinger equations. Physica D 1, 236 (1980)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Nazarenko, S.V., West, R.J.: Analytical solution for NLS vortex reconnection. J. Low Temp. Phys. 132(1–2), 1–10 (2003)

    Article  Google Scholar 

  35. Koplik, J., Levine, H.: Phys. Rev. Lett. 71(9), 1375 (1993)

    Google Scholar 

  36. Jones, C.A., Roberts, P.H.: Motions in a Bose condensate. IV. Axisymmetric solitary waves. J. Phys. A 15, 2599 (1982)

    Article  ADS  Google Scholar 

  37. Kibble, T.W.B.: Topology of cosmic domains and strings. J. Phys. A: Math. Gen. 9, 1387 (1976)

    Article  ADS  Google Scholar 

  38. Zurek, W.H.: Cosmological experiments in superfluid helium? Nature 317 505, (1985); Acta Physica Polonica B24, 1301 (1993)

    Google Scholar 

  39. Nore, C., Abid, M., Brachet, M.E.: Kolmogorov turbulence in low-temperature superflows. Phys. Rev. Lett. 78, 3896 (1997)

    Article  ADS  Google Scholar 

  40. Nore, C., Abid, M., Brachet, M.E.: Decaying Kolmogorov turbulence in a model of superflow. Phys. Fluids 9, 2644 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Kobayashi, M., Tsubota, M.: Kolmogorov spectrum of superfluid turbulence: numerical analysis of the Gross-Pitaevskii Equation with a small-scale dissipation. Phys. Rev. Lett. 94, 065302 (2005)

    Article  ADS  Google Scholar 

  42. Kobayashi, M., Tsubota, M.: Kolmogorov spectrum of quantum turbulence. J. Phys. Soc. Jpn. 74, 3248–3258 (2005)

    Article  ADS  MATH  Google Scholar 

  43. Kobayashi, M., Tsubota, M.: Quantum turbulence in a trapped Bose-Einstein condensate. Phys. Rev. A 76, 045603 (2007)

    Article  ADS  Google Scholar 

  44. Yepez, J., Vahala, G., Vahala, L., Soe, M.: Superfluid turbulence from quantum kelvin wave to classical kolmogorov cascades. Phys. Rev. Lett. 103, 084501 (2009)

    Article  ADS  Google Scholar 

  45. Proment, D., Nazarenko, S., Onorato, M.: Quantum turbulence cascades in the Gross-Pitaevskii model. Phys. Rev. A 80, 051603 (R) (2009)

    Article  ADS  Google Scholar 

  46. Gershgorin, B., Lvov, Y.V., Nazarenko, S.: Canonical Hamiltonians for waves in inhomogeneous media. J. Math. Phys. 50(1), 013527 (2009)

    Google Scholar 

  47. Gardiner, C.W., et al.: Phys. Rev. Lett. 81, 5266 (1998)

    Google Scholar 

  48. Gardiner, C.W., et al.: Phys. Rev. Lett. 79, 1793, (1998)

    Google Scholar 

  49. Bortolozzo, U., Laurie, J., Nazarenko, S., Residori, S.: Optical wave turbulence. J. Opt. Soc. Am. B 26(12), 2280–2284 (2009)

    Article  ADS  Google Scholar 

  50. Bortolozzo, U., Laurie, J., Nazarenko, S., Residori, S.: Optical wave turbulence, to appear as a book chapter In: Localized States in Physics: Solitons and Patterns. Springer, Berlin (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Nazarenko .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nazarenko, S.V. (2011). Bose-Einstein Condensation. In: Wave Turbulence. Lecture Notes in Physics, vol 825. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15942-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15942-8_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15941-1

  • Online ISBN: 978-3-642-15942-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics