Advertisement

A New Method for ECG Signal Feature Extraction

  • Adam Szczepański
  • Khalid Saeed
  • Alois Ferscha
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6375)

Abstract

The paper concentrates on electrocardiographic (ECG) signal analysis for the sake of acquiring proper heartbeat datasets for further detection and recognition of anomalies in an ECG signal. The analysis is based on the distribution of the voltage extreme values of the signal and the time distribution of proper extreme values. The main assumption of the work is creation of as efficient and fast algorithm as possible. The main part of the analysis is carried out on the smoothened signal with the original signal used as the reference for the purpose of keeping desired precision of proper heartbeat identification in the situations when during smoothening necessary data is lost. The proposed method of feature extraction will be used to create the distinctive normal heartbeat samples of patients and the average pattern of the patients’ heartbeat for reference purposes in analysis of the real time signal obtained from 1-lead holter carried by a patient constantly.

Keywords

ECG signal signal analysis 1-lead holter ECG feature extraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Adamec, J., Adamec, R.: ECG Holter. Springer Science+Business Media, LLC, New York (2008)Google Scholar
  3. 3.
    Gawroski, P., Saeed, K., Kuakowski, K.: Early warning of cardiac problems in crowd. In: Jędrzejowicz, P., Nguyen, N.T., Howlet, R.J., Jain, L.C. (eds.) KES-AMSTA 2010. LNCS (LNAI), vol. 6071, pp. 220–229. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Jones, S.A.: ECG Notes: Interpretation and Management Guide. F. A. Davies, Philadelphia (2005)Google Scholar
  5. 5.
    Riener, A., Ferscha, A., Aly, M.: Heart on the road: HRV analysis for monitoring a driver’s affective state. In: Proceedings of the First International Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI 2009), pp. 99–106 (2009)Google Scholar
  6. 6.
    Stouffer, G.A.: Practical ECG Interpretation: Clues to Heart Disease in Young Adults. Wiley-Blackwell, UK (2009)Google Scholar
  7. 7.
    Van Mieghem, C., Sabbe, M., Knockaert, D.: The Clinical Value of the ECG in Noncardiac Conditions. Chest 125, 1561–1576 (2004)CrossRefGoogle Scholar
  8. 8.
    Trahanias, P., Skordalakis, E.: Syntactic pattern recognition of the ECG. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 648–657 (1990)CrossRefGoogle Scholar
  9. 9.
    Hampton, J.R.: The ECG Made Easy, 6th edn. Churchill Livingstone, New York (2003)Google Scholar
  10. 10.
    Khan, M.G.: Rapid ECG Interpretation, 3rd edn. Humana Press, New Jersey (2008)Google Scholar
  11. 11.
    Hung-Chi, L.: ECG in the Child and Adolescent. Blackwell Publishing, Massachusetts (2006)Google Scholar
  12. 12.
    Non-Invasive Fetal Electrocardiogram Database, mothers’ part of the signal was used for analysis, http://www.physionet.org
  13. 13.
    Kemp, B., Vrri, A., Rosa, A.C., Nielsen, K.D., Gade, J.: A simple format for exchange of digitized polygraphic recordings. Electroencephalography and Clinical Neurophysiology 82, 391–393 (1992)CrossRefGoogle Scholar
  14. 14.
    Chou, Y.: Statistical Analysis. Holt Reinhart Winston, New York (1975)Google Scholar
  15. 15.
    Haque, M.A., Rahman, M.E., Al Sayeed, C.A., Uddin, B.M.Z.: A Fast Algorithm in Detecting ECG Characteristic Points. In: Proceedings of Second International Conference on Electrical and Computer Engineering (ICECE 2002), Dhaka, Bangladesh, December 26-28, pp. 160–163 (2002)Google Scholar
  16. 16.
    Cuiwei, L., Chongxun, Z., Changfeng, T.: Detection of ECG Characteristic Points Using Wavelet Transforms. IEEE Transactions on Biomedical Engineering 42, 21–28 (1995)CrossRefGoogle Scholar
  17. 17.
    Chiarugi, F., Sakkalis, V., Emmanouilidou, D., Krontiris, T., Varanini, M., Tollis, I.: Adaptive Threshold QRS Detector with Best Channel Selection Based on a Noise Rating System. In: Computers in Cardiology 2007, pp. 157–160 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Adam Szczepański
    • 1
  • Khalid Saeed
    • 1
  • Alois Ferscha
    • 2
  1. 1.Faculty of Physics and Applied Computer ScienceAGH University of Science and TechnologyCracowPoland
  2. 2.Institute for Pervasive ComputingJohannes Kepler University LinzLinzAustria

Personalised recommendations