GFT: GPU Fast Triangulation of 3D Points

  • Jairo R. Sánchez
  • Hugo Álvarez
  • Diego Borro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6375)


Traditionally triangulating 3D points from image features is a complex task that involves non-linear optimization techniques that are computationally very expensive. This work proposes an algorithm based on Monte Carlo simulations that fits well on the graphics hardware and can perform the triangulation in real time. Results are compared against the well known Levenberg-Mardquart using real video sequences, showing that it achieves the same precision but in much less time.


Single Instruction Multiple Data Bundle Adjustment Structure From Motion Reprojection Error Multiple View Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eskudero, I., Sánchez, J., Buchart, C., García-Alonso, A., Borro, D.: Tracking 3d en gpu basado en el filtro de partículas. In: Congreso Español de Informática Gráfica, pp. 47–55 (2009)Google Scholar
  2. 2.
    Welch, G., Bishop, G.: An introduction to the kalman filter. In: SIGGRAPH, Los Angeles, CA, USA (2001)Google Scholar
  3. 3.
    Qian, G., Chellappa, R.: Structure from motion using sequential monte carlo methods. International Journal of Computer Vision 59(1), 5–31 (2004)CrossRefGoogle Scholar
  4. 4.
    Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics 2(2), 164–168 (1944)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Triggs, B., McLauchlan, P., Hartley, R., Fitzgibbon, A.: Bundle adjustment a modern synthesis. Vision Algorithms: Theory an Practice (2000)Google Scholar
  6. 6.
    Kahl, F.: Multiple view geometry and the l infinity norm. In: International Conference on Computer Vision, vol. 2, pp. 1002–1009 (2005)Google Scholar
  7. 7.
    Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building rome in a day. In: International Conference on Computer Vision, Kyoto, Japan (2009)Google Scholar
  8. 8.
    Klein, G., Murray, D.W.: Parallel tracking and mapping for small ar workspaces. In: International Symposium on Mixed and Augmented Reality (2007)Google Scholar
  9. 9.
    Metropolis, N., Ulam, S.: The monte carlo method. Journal of the Americal Statistical Association 44(247), 335–341 (1949)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kapasi, U.J., Rixner, S., Dally, W.J., Khailany, B., Ahn, J.H., Mattson, P., Owens, J.D.: Programmable stream processors. IEEE Computer, 54–62 (2003)Google Scholar
  11. 11.
    Anderson III, A.G., Goddard III, W.A., Schröder, P.: Quantum monte carlo on graphical processing units. Computer Physics Communications 177(3), 298–306 (2007)CrossRefGoogle Scholar
  12. 12.
    Lourakis, M.: levmar: Levenberg-marquardt nonlinear least squares algorithms in C/C++ (July 2004),
  13. 13.
    Sánchez, J., Borro, D.: Non invasive 3d tracking for augmented video applications. In: IEEE Virtual Reality 2007 Conference, Workshop Trends and Issues in Tracking for Virtual Environments (IEEE VR 2007), Charlotte, USA, pp. 22–27 (2007)Google Scholar
  14. 14.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 2(60), 91–110 (2004)CrossRefGoogle Scholar
  15. 15.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  16. 16.
    Kessenich, J.: The opengl shading language. Technical report, 3Dlabs (2006)Google Scholar
  17. 17.
    Pharr, M.: GPU Gems 2. Programing Techniques for High-Performance Graphics and General-Purpose Computing (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jairo R. Sánchez
    • 1
  • Hugo Álvarez
    • 1
  • Diego Borro
    • 1
  1. 1.CEIT and Tecnun (University of Navarra)San SebastiánSpain

Personalised recommendations