Vector Median Splatting for Image Based Rendering

  • Krzysztof Okarma
  • Aleksandra Miętus
  • Mateusz Tecław
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6375)


In the paper a method of missing data completion based on the vector median filtering is presented, which may be useful as an adaptive splatting algorithm for Image Based Rendering. Presented approach has been verified using some scanned face models rendered using the IBR method with the use of standard splatting and proposed method. Obtained results are promising and may be a starting point for further research related to the adaptive change of the splat weighting function, especially as a support for the real-time face recognition applications.


image based rendering splatting vector median filter image warping 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Astola, J., Haavisto, P., Neuvo, Y.: Vector Median Filters. Proceedings of IEEE 78(4), 678–689 (1990)CrossRefGoogle Scholar
  2. 2.
    Guan, X., Mueller, K.: Point-based Surface Rendering with Motion Blur. In: Eurographics Symposium on Point-Based Graphics (2004)Google Scholar
  3. 3.
    Karakos, D.G., Trahanias, P.E.: Generalized Multichannel Image-Filtering Structures. IEEE Trans. Image Processing 6(7), 1038–1045 (1997)CrossRefGoogle Scholar
  4. 4.
    McMillan, L.: An Image-Based Approach to Three-Dimensional Computer Graphics. Ph.D. Dissertation, University of North Carolina, Chapel Hill (1997)Google Scholar
  5. 5.
    Rheingans, P.: Expressive Volume Rendering. Journal of WSCG 12(1-3), 7–10 (2004)Google Scholar
  6. 6.
    Shade, J., Gortler, S., He, L., Szeliski, R.: Layered Depth Images. In: Proc. Int. Conf. SIGGRAPH 1998, pp. 231–242 (1998)Google Scholar
  7. 7.
    Viola, I., Kanitsar, A., Gröller, M.A.: Importance-Driven Volume Rendering. In: Proc. IEEE Visualization 2004, pp. 139–145 (2004)Google Scholar
  8. 8.
    Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image Quality Assessment: From Error Measurement to Structural Similarity. IEEE Trans. Image Processing 13(4), 600–612 (2004)CrossRefGoogle Scholar
  9. 9.
    Wang, Z., Simoncelli, E., Bovik, A.: Multi-Scale Structural Similarity for Image Quality Assessment. In: Proc. 37th IEEE Asilomar Conf. on Signals, Systems and Computers, Pacific Grove, CA (2003)Google Scholar
  10. 10.
    Westover, L.: Footprint Evaluation for Volume Rendering. Computer Graphics 24(4), 367–376 (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Krzysztof Okarma
    • 1
  • Aleksandra Miętus
    • 1
  • Mateusz Tecław
    • 1
  1. 1.Szczecin, Faculty of Electrical Engineering, Department of Signal Processing and Multimedia EngineeringWest Pomeranian University of TechnologySzczecinPoland

Personalised recommendations