Advertisement

Inferior Maxillary Bone Tissue Classification in 3D CT Images

  • Silvia Moreno
  • Sandra L. Caicedo
  • Tonny Strulovic
  • Juan C. Briceño
  • Fernando Briceño
  • Soledad Gómez
  • Marcela Hernández Hoyos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6375)

Abstract

This paper presents a method for segmenting the inferior maxillary bone in CT images and a technique to automatically classify bone tissue without requiring a training stage. These methods are used to measure the mean density of seven main anatomical zones of the mandible, making the difference between cortical and cancellous bone. The results lead to determine the normal density values in each region of the inferior maxillary bone and help to evaluate the success of the bone regeneration process. The proposed method was validated on ten axial slices from different zones of a patient mandible, by comparing automatic classification results with those obtained by expert manual classification. A 4% mean difference was found between percentages of bone tissue types, and the mean difference between mean density values was of 88 HU. Once the method was validated, it was applied to measure density in the seven anatomical zones of the inferior maxillary bone.

Keywords

Bone Tissue Cortical Bone Compute Tomography Image Cancellous Bone Outer Shell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rickey, F.A., Elmore, D., Hillegonds, D., Badylak, S., Record, R., Simmons-Byrd, A.: Re-generation of tissue about an animal-based scaffold: AMS studies of the fate of the scaffold. Nucl. Instrum Meth. B 172(1-4), 904–909 (2000)CrossRefGoogle Scholar
  2. 2.
    Tognola, G., Parazzini, M., Pedretti, G., Ravazzani, P., Svelto, C., Norgia, M., Grandori, F.: Three- Dimensional Reconstruction and Image Processing in Mandibular Distraction Planning. IEEE T. Instrum. Meas. 55(6), 1959–1964 (2006)CrossRefGoogle Scholar
  3. 3.
    Barandiaran, I., Macía, I., Berckmann, E., Wald, D., Dupillier, M.P., Paloc, C., Graña, M.: An Automatic Segmentation and Reconstruction of Mandibular Structures from CT-Data. In: Corchado, E., Yin, H. (eds.) IDEAL 2009. LNCS, vol. 5788, pp. 649–655. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Krsek, P., Spanel, M., Krupa, P., Marek, I., Cernochov, P.: Teeth and Jaw 3D Reconstrucion in Stomatology. In: Proceedings of the International Conference on Medical information Visualisation - Biomedical Visualisation, Zurich, Switzerland, pp. 23–28. IEEE Computer Society, Los Alamitos (2007)CrossRefGoogle Scholar
  5. 5.
    Futterling, F., Klein, R., Straber, W., Weber, H.: Automated Finite Element Modeling of a Human Mandible with Dental Implants. In: 6th International Conference in Central Europe on Computer Graphics and Visualization (1998)Google Scholar
  6. 6.
    Rueda, S., Gil, J.A., Pichery, R., Alcañiz, M.: Automatic Segmentation of Jaw Tissues in CT Using Active Appearance Models and Semi-automatic Landmarking. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 167–174. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice Hall, Englewood Cliffs (2008)Google Scholar
  8. 8.
    Lorenz, C., von Berg, J.: Fast automated object detection by recursive casting of search rays. In: CARS 2005: Computer Assisted Radiology and Surgery, vol. 1281, pp. 230–235 (2005)Google Scholar
  9. 9.
    Dunn, J.C.: A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters. Cybernetics and Systems 3(3), 32–57 (1976)CrossRefMathSciNetGoogle Scholar
  10. 10.
    ImageJ (2009), http://rsbweb.nih.gov/ij (Cited November 30)
  11. 11.
    Kitware, Inc.: The Visualization Toolkit (2009), http://www.vtk.org (Cited July 30)
  12. 12.
    Creatis LRMN (2009) CreaTools Available from, http://www.creatis.insa-lyon.fr/creatools (Cited July 30)

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Silvia Moreno
    • 1
  • Sandra L. Caicedo
    • 1
  • Tonny Strulovic
    • 3
  • Juan C. Briceño
    • 2
  • Fernando Briceño
    • 3
  • Soledad Gómez
    • 2
  • Marcela Hernández Hoyos
    • 1
    • 2
  1. 1.IMAGINE: Computación VisualUniversidad de Los AndesBogotáColombia
  2. 2.Grupo de Ingeniería BiomédicaUniversidad de Los AndesBogotáColombia
  3. 3.Centro de Investigaciones OdontológicasPontificia Universidad JaverianaBogotáColombia

Personalised recommendations