Accurate Overlap Area Detection Using a Histogram and Multiple Closest Points

  • Yonghuai Liu
  • Ralph R. Martin
  • Longzhuang Li
  • Baogang Wei
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6375)


In this paper, we propose a novel ICP variant that uses a histogram in conjunction with multiple closest points to detect the overlap area between range images being registered. Tentative correspondences sharing similar distances are normally all within, or all outside, the overlap area. Thus, the overlap area can be detected in a bin by bin batch manner using a histogram. Using multiple closest points is likely to enlarge the distance difference for tentative correspondences in the histogram, and pull together the images being registered, facilitating the overlap area detection. Our experimental results based on real range images show that the performance of our proposed algorithm enhances the state of the art.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bae, K.-H.: Evaluation of the convergence region of an automated registration method for 3D laser scanner point clouds. Sensors 9, 355–375 (2009)CrossRefGoogle Scholar
  2. 2.
    Banno, A., Masuda, T., Oishi, T., Ikeuchi, K.: Flying laser range sensor for large-scale site-modeling and its application in Bayon digital archival project. IJCV 78, 207–222 (2008)CrossRefGoogle Scholar
  3. 3.
    Besl, P.J., McKay, N.D.: A method for registration of 3D shapes. IEEE Trans. PAMI 14, 239–256 (1992)Google Scholar
  4. 4.
    Castellani, U., Cristani, M., Fantoni, S., Murino, V.: Sparse points matching by combining 3D mesh saliency with statistical descriptors. Computer Graphics Forum 27, 643–652 (2008)CrossRefGoogle Scholar
  5. 5.
    Dewaele, G., Devernay, F., Horaud, H.: Hand motion from 3D point trajectories and a smooth surface model. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 495–507. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Dinh, H.Q., Kropac, S.: Multi-resolution spin images. In: Proc. CVPR, pp. 863–870 (2006)Google Scholar
  7. 7.
    Gold, S., Rangarajan, A., et al.: New algorithms for 2-D and 3-D point matching: pose estimation and correspondence. Pattern Recognition 31, 1019–1031 (1998)CrossRefGoogle Scholar
  8. 8.
    Granger, S., Pennec, X.: Multi-scale EMICP: a fact and robust approach for surface registration. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 418–432. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Liu, Y.: Replicator dynamics in the iterative process for accurate range image matching. IJCV 83, 30–56 (2009)CrossRefGoogle Scholar
  10. 10.
    Liu, Y.: Constraints for closest point finding. Pattern Recognition Letters 29, 841–851 (2008)CrossRefGoogle Scholar
  11. 11.
    Liu, Y.: Improving ICP with easy implementation for free form surface matching. Pattern Recognition 37, 211–226 (2004)zbMATHCrossRefGoogle Scholar
  12. 12.
    Lomonosov, E., Chetverikov, D., Ekart, A.: Pre-registration of arbitrarily oriented 3D surfaces using a genetic algorithm. Pattern Recognition Letters 27, 1201–1208 (2006)CrossRefGoogle Scholar
  13. 13.
    Marquez, M.R.G., Wu, S.-T.: Using simplified meshes for crude registration of two partially overlapping range images. In: WSCG, pp. 183–190 (2007)Google Scholar
  14. 14.
    Masuda, T.: Log-polar height maps for multiple range image registration. Computer Vision and Image Understanding 113, 1158–1169 (2009)CrossRefGoogle Scholar
  15. 15.
    Phillips, J.M., Liu, R., Tomasi, C.: Outlier robust ICP for minimizing fractional RMSD. In: Proc. 3DIM, pp. 427–434 (2007)Google Scholar
  16. 16.
    Pulli, K.: Multiview registration for large data sets. In: Proc. 3DIM, pp. 160–168 (1999)Google Scholar
  17. 17.
    Santamaria, J., Cordon, O., Damas, S., Aleman, I., Botella, M.: A scatter search-based technique for pair-wise 3D range image registration in forensic anthropology. Soft Computing 11, 819–828 (2007)CrossRefGoogle Scholar
  18. 18.
    Scott, D.W.: On optimal and data-based histograms. Biometrika 66, 605–610 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Sharp, G.C., Lee, S.W., Wehe, D.K.: Maximum-likelihood registration of range images with missing data. IEEE Trans. PAMI 30, 120–130 (2008)Google Scholar
  20. 20.
    Silva, L., Bellon, O.R.P., Boyer, K.L.: Precision range image registration using a robust surface interpenetration measure and enhanced genetic algorithms. IEEE Trans. PAMI 27, 762–776 (2005)Google Scholar
  21. 21.
    Wang, F., et al.: Groupwise point pattern registration using a novel CDF-based Jensen-Shannon divergence. In: Proc. CVPR, pp. 1283–1288 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yonghuai Liu
    • 1
  • Ralph R. Martin
    • 2
  • Longzhuang Li
    • 3
  • Baogang Wei
    • 4
  1. 1.Department of Computer ScienceAberystwyth UniversityCeredigionUK
  2. 2.School of Computer Science & InformaticsCardiff UniversityCardiffUK
  3. 3.Department of Computing ScienceTexas A and M UniversityCorpus ChristiUSA
  4. 4.College of Computer ScienceZhejiang UniversityHangzhouP.R. China

Personalised recommendations