A Constraint Satisfaction Framework with Bayesian Inference for Model-Based Object Recognition

  • Włodzimierz Kasprzak
  • Łukasz Czajka
  • Artur Wilkowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6375)


A general (application independent) framework for the recognition of partially hidden 3-D objects in images is presented. It views the model-to-image matching as a constraint satisfaction problem (CSP) supported by Bayesian net-based evaluation of partial variable assignments. A modified incremental search for CSP is designed that allows partial solutions and calls for stochastic inference in order to provide judgments of partial states. Hence the detection of partial occlusion of objects is handled consistently with Bayesian inference over evidence and hidden variables. A particular problem of passing different objects to a machine by a human hand is solved while applying the general framework. The conducted experiments deal with the recognition of three objects: a simple cube, a Rubik cube and a tea cup.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Besl, P., Jain, R.: Three-Dimensional Object Recognition. Computing Surveys 17(1), 75–145 (1985)CrossRefGoogle Scholar
  2. 2.
    Faugeras, O.: Three-dimensional computer vision. A geometric viewpoint. The MIT Press, Cambridge (1993)Google Scholar
  3. 3.
    Tsai, W., Fu, K.: Subgraph error-correcting isomorphisms for syntactic pattern recognition. IEEE Trans. SMC 13, 48–62 (1983)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Niemann, H., Sagerer, G., Schroder, S., Kummert, F.: ERNEST: A semantic network system for pattern understanding. IEEE Trans. PAMI 12, 883–905 (1990)Google Scholar
  5. 5.
    Kasprzak, W.: A Linguistic Approach to 3-D Object Recognition. Computers & Graphics 11(4), 427–443 (1987)CrossRefGoogle Scholar
  6. 6.
    Russel, S., Norvig, P.: Artificial Intelligence. A modern approach, 2nd edn. Prentice Hall, Englewood Cliffs (2002)Google Scholar
  7. 7.
    Chan, K., Cheung, Y.: Fuzzy-attribute graph with application to chinese character recognition. IEEE Trans. SMC 22, 402–410 (1992)Google Scholar
  8. 8.
    Haralick, R., Shapiro, L.: The Consistent Labeling Problem, Part I. IEEE Trans. PAMI 1(2), 173–184 (1979)zbMATHGoogle Scholar
  9. 9.
    Duda, R.O., Hart, P.E., Stork, D.: Pattern Classification and Scene Analysis, 2nd edn. J. Wiley, New York (2001)Google Scholar
  10. 10.
    Kasprzak, W., Szynkiewicz, W., Czajka, L.: Rubik’s Cube Reconstruction from Single View for Service Robots. Machine Graphics & Vision 15(2/3), 451–460 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Włodzimierz Kasprzak
    • 1
  • Łukasz Czajka
    • 1
  • Artur Wilkowski
    • 1
  1. 1.Institute of Control and Computation Eng.Warsaw University of Technology 

Personalised recommendations