Skip to main content

Interactive Motion Modeling and Parameterization by Direct Demonstration

  • Conference paper
Intelligent Virtual Agents (IVA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6356))

Included in the following conference series:

Abstract

While interactive virtual humans are becoming widely used in education, training and therapeutic applications, building animations which are both realistic and parameterized in respect to a given scenario remains a complex and time–consuming task. In order to improve this situation, we propose a framework based on the direct demonstration and parameterization of motions. The presented approach addresses three important aspects of the problem in an integrated fashion: (1) our framework relies on an interactive real-time motion capture interface that empowers non–skilled animators with the ability to model realistic upper-body actions and gestures by direct demonstration; (2) our interface also accounts for the interactive definition of clustered example motions, in order to well represent the variations of interest for a given motion being modeled; and (3) we also present an inverse blending optimization technique which solves the problem of precisely parameterizing a cluster of example motions in respect to arbitrary spatial constraints. The optimization is efficiently solved on-line, allowing autonomous virtual humans to precisely perform learned actions and gestures in respect to arbitrarily given targets. Our proposed framework has been implemented in an immersive multi-tile stereo visualization system, achieving a powerful and intuitive interface for programming generic parameterized motions by demonstration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arikan, O., Forsyth, D.A., O’Brien, J.F.: Motion synthesis from annotations. ACM Transaction on Graphics (Proceedings of SIGGRAPH) 22(3), 402–408 (2003)

    Article  Google Scholar 

  2. Billard, A., Matarić, M.J.: Learning human arm movements by imitation: Evaluation of a biologically inspired connectionist architecture. Robotics and Autonomous Systems 37(2-3), 145–160 (2001)

    Article  Google Scholar 

  3. Bruderlin, A., Williams, L.: Motion signal processing. In: SIGGRAPH 1995, pp. 97–104. ACM, New York (1995)

    Google Scholar 

  4. Chai, J., Hodgins, J.K.: Performance animation from low-dimensional control signals. In: SIGGRAPH 2005: ACM SIGGRAPH 2005 Papers, pp. 686–696. ACM, New York (2005)

    Google Scholar 

  5. Cooper, S., Hertzmann, A., Popović, Z.: Active learning for real-time motion controllers. ACM Transactions on Graphics (SIGGRAPH 2007) 26(3) (August 2007)

    Google Scholar 

  6. Dontcheva, M., Yngve, G., Popović, Z.: Layered acting for character animation. ACM Transactions on Graphics 22(3), 409–416 (2003)

    Article  Google Scholar 

  7. Raunhardt, R.D.: Motion constraint. Visual Computer, 509–518 (2009)

    Google Scholar 

  8. Gebhard, P., Kipp, M., Klesen, M., Rist, T.: What are they going to talk about? towards life-like characters that reflect on interactions with users. In: Proc. of the 1st International Conference on Technologies for Interactive Digital Storytelling and Entertainment (TIDSE 2003) (2003)

    Google Scholar 

  9. Grochow, K., Martin, S., Hertzmann, A., Popović, Z.: Style-based inverse kinematics. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 23(3), 522–531 (2004)

    Article  Google Scholar 

  10. Huang, Y., Kallmann, M.: Interactive demonstration of pointing gestures for virtual trainers. In: Proceedings of 13th International Conference on Human-Computer Interaction, San Diego, CA (2009)

    Google Scholar 

  11. Yamaguchi, J., Takanishi, A., Kato, I.: Development of a biped walking robot compensating for three-axis moment by trunk motion. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 561–566 (1993)

    Google Scholar 

  12. Kallmann, M.: Analytical inverse kinematics with body posture control. Computer Animation and Virtual Worlds 19(2), 79–91 (2008)

    Article  Google Scholar 

  13. Kopp, S., Wachsmuth, I.: Model-based animation of co-verbal gesture. In: Proceedings of Computer Animation, pp. 252–257 (2002)

    Google Scholar 

  14. Kovar, L., Gleicher, M.: Automated extraction and parameterization of motions in large data sets. ACM Transaction on Graphics (Proceedings of SIGGRAPH) 23(3), 559–568 (2004)

    Article  Google Scholar 

  15. Kovar, L., Gleicher, M., Pighin, F.: Motion graphs. ACM Trans. Graph. 21(3), 473–482 (2002)

    Article  Google Scholar 

  16. Lee, J., Chai, J., Reitsma, P.S.A., Hodgins, J.K., Pollard, N.S.: Interactive control of avatars animated with human motion data. ACM Transactions on Graphics 21(3), 491–500 (2002)

    Article  Google Scholar 

  17. Monheit, G., Badler, N.I.: A kinematic model of the human spine and torso. IEEE Comput. Graph. Appl. 11(2), 29–38 (1991)

    Article  Google Scholar 

  18. Mukai, T., Kuriyama, S.: Geostatistical motion interpolation. In: ACM SIGGRAPH, pp. 1062–1070. ACM, New York (2005)

    Google Scholar 

  19. Noma, T., Zhao, L., Badler, N.I.: Design of a virtual human presenter. IEEE Computer Graphics and Applications 20(4), 79–85 (2000)

    Article  Google Scholar 

  20. Peinado, M., Meziat, D., Maupu, D., Raunhardt, D., Thalmann, D., Boulic, R.: Full-Body Avatar Control with Environment Awareness. IEEE Computer Graphics And Applications 29, 62–75 (2009)

    Article  Google Scholar 

  21. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press, New York (2007)

    MATH  Google Scholar 

  22. Rose, C., Bodenheimer, B., Cohen, M.F.: Verbs and adverbs: Multidimensional motion interpolation. IEEE Computer Graphics and Applications 18, 32–40 (1998)

    Article  Google Scholar 

  23. Rose, C.F., Sloan, P.P.J., Cohen, M.F.: Artist-directed inverse-kinematics using radial basis function interpolation. Computer Graphics Forum (Proceedings of Eurographics) 20(3), 239–250 (2001)

    Article  Google Scholar 

  24. Kagami, S., et al.: Autobalancer: An online dynamic balance compensation scheme for humanoid robots. In: Int. Workshop Alg. Found. Robot (2000)

    Google Scholar 

  25. Safonova, A., Hodgins, J.K.: Construction and optimal search of interpolated motion graphs. In: SIGGRAPH 2007: ACM SIGGRAPH 2007 papers, p. 106. ACM, New York (2007)

    Google Scholar 

  26. Schaal, S., Ijspeert, A., Billard, A.: Computational approaches to motor learning by imitation. The Neuroscience of Social Interaction 1431, 199–218 (2003)

    Google Scholar 

  27. Stone, M., DeCarlo, D., Oh, I., Rodriguez, C., Stere, A., Lees, A., Bregler, C.: Speaking with hands: creating animated conversational characters from recordings of human performance. ACM Transactions on Graphics 23(3), 506–513 (2004)

    Article  Google Scholar 

  28. Thiebaux, M., Marshall, A., Marsella, S., Kallmann, M.: Smartbody: Behavior realization for embodied conversational agents. In: Seventh International Joint Conference on Autonomous Agents and Multi-Agent Systems, AAMAS (2008)

    Google Scholar 

  29. Unuma, M., Anjyo, K., Takeuchi, R.: Fourier principles for emotion-based human figure animation. In: SIGGRAPH ’95, pp. 91–96. ACM, New York (1995)

    Chapter  Google Scholar 

  30. Wiley, D.J., Hahn, J.K.: Interpolation synthesis of articulated figure motion. IEEE Computer Graphics and Applications 17(6), 39–45 (1997)

    Article  Google Scholar 

  31. Zheng, Y., et al.: Generating human interactive behaviours using the windowed viterbi algorithm. Computer Vision and Computer Graphics. Theory and Applications, 70–82 (2009)

    Google Scholar 

  32. Yamane, K., Kuffner, J.J., Hodgins, J.K.: Synthesizing animations of human manipulation tasks. In: SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, pp. 532–539. ACM, New York (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Camporesi, C., Huang, Y., Kallmann, M. (2010). Interactive Motion Modeling and Parameterization by Direct Demonstration. In: Allbeck, J., Badler, N., Bickmore, T., Pelachaud, C., Safonova, A. (eds) Intelligent Virtual Agents. IVA 2010. Lecture Notes in Computer Science(), vol 6356. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15892-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15892-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15891-9

  • Online ISBN: 978-3-642-15892-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics