Advertisement

Reed Muller Sensing Matrices and the LASSO

(Invited Paper)
  • Robert Calderbank
  • Sina Jafarpour
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6338)

Abstract

We construct two families of deterministic sensing matrices where the columns are obtained by exponentiating codewords in the quaternary Delsarte-Goethals code DG(m,r). This method of construction results in sensing matrices with low coherence and spectral norm. The first family, which we call Delsarte-Goethals frames, are 2 m - dimensional tight frames with redundancy 2 rm . The second family, which we call Delsarte-Goethals sieves, are obtained by subsampling the column vectors in a Delsarte-Goethals frame. Different rows of a Delsarte-Goethals sieve may not be orthogonal, and we present an effective algorithm for identifying all pairs of non-orthogonal rows. The pairs turn out to be duplicate measurements and eliminating them leads to a tight frame. Experimental results suggest that all DG(m,r) sieves with m ≤ 15 and r ≥ 2 are tight-frames; there are no duplicate rows. For both families of sensing matrices, we measure accuracy of reconstruction (statistical 0 − 1 loss) and complexity (average reconstruction time) as a function of the sparsity level k. Our results show that DG frames and sieves outperform random Gaussian matrices in terms of noiseless and noisy signal recovery using the LASSO.

Keywords

Compressed Sensing Reed-Muller Codes Delsarte- Goethals Set Random Sub-dictionary LASSO 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Candès, E., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics 59(8), 1207–1223 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Donoho, D.: Compressed Sensing. IEEE Transactions on Information Theory 52(4), 1289–1306 (2006)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Candès, E., Tao, T.: Near optimal signal recovery from random projections: Universal encoding strategies. IEEE Transactions on Information Theory 52(12), 5406–5425 (2006)CrossRefGoogle Scholar
  4. 4.
    Candès, E., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory 52(2), 489–509 (2006)CrossRefGoogle Scholar
  5. 5.
    Cohen, A., Dahmen, W., DeVore, R.: Compressed sensing and best k-term approximation. Journal of American Mathematical Society 22, 211–231 (2009)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Baraniuk, R., Davenport, M., DeVore, R., Wakin, M.: A simple proof of the restricted isometry property for random matrices. Constructive Approximation 28(3), 253–263 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    DeVore, R.A.: Deterministic constructions of compressed sensing matrices. Journal of Complexity 23(4-6), 918–925 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Strohmer, T., Heath, R.W.: Grassmannian frames with applications to coding and communication. Applied and Computational Harmonic Analysis 14(3), 257s–275s (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Bajwa, W., Haupt, J., Raz, G., Wright, S., Nowak, R.: Toeplitz-structured compressed sensing matrices. In: Statistical Signal Processing. IEEE/SP 14th Workshop on Publication, pp. 294–298 (August 2007)Google Scholar
  10. 10.
    Jafarpour, S., Xu, W., Hassibi, B., Calderbank, R.: Efficient compressed Sensing using Optimized Expander Graphs. IEEE Transactions on Information Theory 55(9), 4299–4308 (2009)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Berinde, R., Gilbert, A., Indyk, P., Karloff, H., Strauss, M.: Combining geometry and combinatorics: a unified approach to sparse signal recovery. In: 46th Annual Allerton Conference on Communication, Control, and Computing, pp. 798–805 (September 2008)Google Scholar
  12. 12.
    Chandar, V.: A negative result concerning explicit matrices with the restricted isometry property (2008) (preprint)Google Scholar
  13. 13.
    Tropp, J.: The Sparsity Gap: Uncertainty Principles Proportional to Dimension. In: Proc. 44th Ann. IEEE Conf. Information Sciences and Systems, CISS (to appear 2010)Google Scholar
  14. 14.
    Candès, E., Plan, Y.: Near-ideal model selection by ℓ1 minimization. Annals of Statistics 37, 2145–2177 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Wright, S., Nowak, R., Figueiredo, M.: Sparse reconstruction by separable approximation. IEEE Transactions on Signal Processing 57(7), 2479–2493 (2009)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Calderbank, R., Howard, S., Jafarpour, S.: Sparse reconstruction via the Reed-Muller sieve. Accepted to the International Symposium on Information Theory, ISIT (2010)Google Scholar
  17. 17.
    Calderbank, R., Howard, S., Jafarpour, S.: Construction of a large class of Matrices satisfying a Statistical Isometry Propery. IEEE Journal of Selected Topics in Signal Processing, Special Issues on Compressive Sensing 4(2), 358–374 (2010)CrossRefGoogle Scholar
  18. 18.
    Hammons, A.R., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A., Sole, P.: The ℤ4-linearity of Kerdock Codes, Preparata, Goethals, and related codes. IEEE Transactions on Information Theory 40(2), 301–319 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Calderbank, A.R.: Reed-Muller Codes and Symplectic Geometry. In: Recent trends in Coding Theory and its Applications. AMS / IP Studies in Advanced Mathematics. American Mathematical Society, Providence (2006)Google Scholar
  20. 20.
    Calderbank, A.R., Cameron, P.J., Kantor, W.M., Seidel, J.J.: ℤ4–Kerdock Codes, orthogonal spreads and extremal euclidean line sets. Proceedings of London Math. Society 75, 436–480 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Levenshtein, V.I.: Bounds on the maximum cardinality of a code with bounded modulus of the inner product. Soviet Math. Dokl. 25, 526–531 (1982)Google Scholar
  22. 22.
    Calderbank, R., Howard, S., Jafarpour, S.: A sub-linear algorithm for Sparse Reconstruction with ℓ2/ℓ2 Recovery Guarantees (2009) (preprint)Google Scholar
  23. 23.
    Gurevich, S., Hadani, R.: The statistical restricted isometry property and the Wigner semicircle distribution of incoherent dictionaries. Submitted to the Annals of Applied Probability (2009)Google Scholar
  24. 24.
    Candès, E., Romberg, J.: ℓ1-magic: Recovery of sparse signals via convex programming (2005), http://www.acm.caltech.edu/l1magic
  25. 25.
    Tropp, J., Wright, S.: Computational methods for sparse solution of linear inverse problems. Technical Report No. 2009-01, California Institute of Technology (2009)Google Scholar
  26. 26.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Robert Calderbank
    • 1
  • Sina Jafarpour
    • 2
  1. 1.Department of Electrical Engineering and Department of MathematicsPrinceton University 
  2. 2.Department of Computer SciencePrinceton University 

Personalised recommendations