Sequences, Bent Functions and Jacobsthal Sums

  • Tor Helleseth
  • Alexander Kholosha
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6338)


The p-ary function f(x) mapping GF(p 4k ) to GF(p) and given by \(f(x)={\rm Tr}_{4k}\big(ax^d+bx^2\big)\) with a,b ∈ GF(p 4k ) and d = p 3k  + p 2k  − p k  + 1 is studied with the respect to its exponential sum. In the case when either \(a^{p^k(p^k+1)}\neq b^{p^k+1}\) or a 2 = b d with b ≠ 0, this sum is shown to be three-valued and the values are determined. For the remaining cases, the value of the exponential sum is expressed using Jacobsthal sums of order p k  + 1. Finding the values and the distribution of those sums is a long-lasting open problem.


Cyclotomic number Jacobsthal sum p-ary bent function polynomial over finite field Walsh transform 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Niho, Y.: Multi-Valued Cross-Correlation Functions Between Two Maximal Linear Recursive Sequences. PhD thesis, University of Southern California, Los Angeles (1972)Google Scholar
  2. 2.
    Helleseth, T.: A note on the cross-correlation function between two binary maximal length linear sequences. Discrete Math. 23(3), 301–307 (1978)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Helleseth, T., Kholosha, A.: New binomial bent functions over the finite fields of odd characteristic. IEEE Trans. Inf. Theory (to appear 2010),
  4. 4.
    Kumar, P.V., Scholtz, R.A., Welch, L.R.: Generalized bent functions and their properties. J. Combin. Theory Ser. A 40(1), 90–107 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Hou, X.D.: p-Ary and q-ary versions of certain results about bent functions and resilient functions. Finite Fields Appl. 10(4), 566–582 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Pott, A., Tan, Y., Feng, T., Ling, S.: Association schemes arising from bent functions. In: Kholosha, A., Rosnes, E., Parker, M. (eds.) WCC 2009 Preproceedings - The International Workshop on Coding and Cryptography, Bergen, pp. 48–61 (2009)Google Scholar
  7. 7.
    Tan, Y., Pott, A., Feng, T.: Strongly regular graphs associated with ternary bent functions. J. Combin. Theory Ser. A 117(6), 668–682 (2010)zbMATHCrossRefGoogle Scholar
  8. 8.
    Helleseth, T., Kholosha, A.: Monomial and quadratic bent functions over the finite fields of odd characteristic. IEEE Trans. Inf. Theory 52(5), 2018–2032 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Baumert, L., Mills, W., Ward, R.L.: Uniform cyclotomy. J. Number Theory 14(1), 67–82 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hauge, E.R., Helleseth, T.: DeBruijn sequences, irreducible codes and cyclotomy. Discrete Math. 159(1-3), 143–154 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Lidl, R., Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and its Applications, vol. 20. Cambridge University Press, Cambridge (1997)Google Scholar
  12. 12.
    Silverman, J.H.: The Arithmetic of Elliptic Curves, 2nd edn. Graduate Texts in Mathematics, vol. 106. Springer, Berlin (2009)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Tor Helleseth
    • 1
  • Alexander Kholosha
    • 1
  1. 1.The Selmer Center, Department of InformaticsUniversity of BergenBergenNorway

Personalised recommendations