Some Constructions of Almost-Perfect, Odd-Perfect and Perfect Polyphase and Almost-Polyphase Sequences

  • Evgeny I. Krengel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6338)


In the paper, some new almost-perfect (AP), odd-perfect (OP) and perfect polyphase and almost-polyphase sequences derived from the Frank and Milewski sequences are presented. The considered almost-polyphase sequences are polyphase sequences with some zero elements. In particular, we constructed AP 2 t + 1- and 2 t + 2-phase sequences of length 2·4 t and 4 t + 1, OP 2 t + 1- and 2 t + 2-phase sequences of length 4 t and 2·4 t , OP 2 t + 1- and 2 t + 2 - phase sequences of length 4 t (p m  + 1), \((p^m-1)\equiv 0 \pmod {2\cdot 4^t}\) with 4 t zeroes and length 2·4 t (p m  + 1), \((p^m-1) \equiv 0 \pmod {4^{t+1}}\) with 2·4 t zeroes, and perfect 2 t + 1- and 2 t + 2 - phase sequences of length 4 t + 1(p m  + 1) with 4 t + 1 zeroes and 2·4 t + 1(p m  + 1) with 2·4 t + 1 zeroes. It is shown that the phase alphabet size of the obtained OP and perfect almost-polyphase sequences is much smaller in comparison with the known OP and perfect polyphase sequences of the same length and the alphabet size of some new OP polyphase sequences is minimum.


Cyclic Shift Alphabet Size Perfect Sequence Shift Sequence Autocorrelation Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Golomb, S.W., Gong, G.: Signal Design for Good Correlation: for Wireless Communication,Cryptography and Radar. Cambridge University Press, Cambridge (2005)zbMATHCrossRefGoogle Scholar
  2. 2.
    Ipatov, V.P.: Periodic discrete signals with optimal correlation properties. Moscow, “Radio i svyaz” (1992), ISBN-5-256-00986-9Google Scholar
  3. 3.
    Fan, P., Darnell, M.: Sequence Design for Communications Applications. Research Studies Press Ltd., London (1996)Google Scholar
  4. 4.
    Lüke, H.D., Schotten, H.D., Hadinejad-Mahram, H.: Binary and quadriphase sequences with optimal autocorrelation properties: survey. IEEE Transactions on Information Theory IT-49(12), 3271–3282 (2001)Google Scholar
  5. 5.
    Frank, R.L.: Phase coded communication system. U.S. Patent 3,099,795, July 30 (1963)Google Scholar
  6. 6.
    Chu, D.C.: Polyphase codes with good periodic correlation properties. IEEE Transactions on Information Theory IT-18, 531–533 (1972)CrossRefGoogle Scholar
  7. 7.
    Milewski, A.: Periodic sequences with optimal properties for channel estimation and fast start-up equalization. IBM Jornal of Research and Development 27(5), 425–431 (1983)Google Scholar
  8. 8.
    Hoholdt, T., Justesen, J.: Ternary sequences with perfect periodic auto-correlation. IEEE Transactions on Information Theory IT-29(4), 597–600 (1983)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Lee, C.E.: Perfect q-ary sequences from multiplicative characters over GF(p). Electron. Lett. 3628(9), 833–835 (1992)CrossRefGoogle Scholar
  10. 10.
    Lüke, H.D.: BTP-transform and perfect sequences with small phase alphabet. IEEE Transactions Aerosp. Syst. 32, 497–499 (1996)CrossRefGoogle Scholar
  11. 11.
    Krengel, E.I.: Some new 8-phase perfect sequences with two zeroes. In: Proceedings of the second International Symposium on Sequence Design and Its Application in Communications (IWSDA 2005), Shimonoseki, Japan, October 10-14, pp. 35–38 (2005)Google Scholar
  12. 12.
    Schotten, H.D., Lüke, H.D.: New perfect and w-cyclic-perfect sequences. In: Proc. 1996 IEEE International Symp. on Information Theory, pp. 82–85 (1996)Google Scholar
  13. 13.
    Krengel, E.I.: New polyphase perfect sequences with small alphabet. Electron. Lett. 44(17), 1013–1014 (2008)CrossRefGoogle Scholar
  14. 14.
    Krengel, E.I.: A method of construction of perfect sequences. Radiotehnika 11, 15–21 (2009)Google Scholar
  15. 15.
    Wolfmann, J.: Almost perfect autocorrelation sequences. IEEE Transactions on Information Theory IT–38(4), 1412–1418 (1992)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Langevin, P.: Almost perfect binary functions. Applicable Algebra in Engineering, Communication and Computing 4, 95–102 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Pott, A., Bradley, S.: Existance and nonexistence of almost-perfect autocorrelation sequences. IEEE Transactions on Information Theory IT-41(1), 301–304 (1995)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Langevin, P.: Some sequences with good autocorrelation properties. In: Finite Fields, vol. 168, pp. 175–185 (1994)Google Scholar
  19. 19.
    Lüke, H.D.: Almost-perfect quadriphase sequences. IEEE Transactions on Information Theory IT-47, 2607–2608 (2001)CrossRefGoogle Scholar
  20. 20.
    Krengel, E.I.: Almost-perfect and odd-perfect ternary sequences. In: Helleseth, T., Sarwate, D., Song, H.-Y., Yang, K. (eds.) SETA 2004. LNCS, vol. 3486, pp. 197–207. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Lüke, H.D., Schotten, H.D.: Odd-perfect almost binary correlation sequences. IEEE Trans. Aerosp. Electron. Syst. 31, 495–498 (1996)CrossRefGoogle Scholar
  22. 22.
    Zeng, X.Y., Hu, L., Liu, Q.C.: A novel method for constructing almost perfect polyphase sequences. In: Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 346–353. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Mow, W.H.: Even-odd transformation with application to multi-user CW radars. In: Proceedings 1996 IEEE 4th International Symposium on Spread Spectrum Techniques and Applications Proceedings, Mainz, Germany, September 22-25, pp. 191–193 (1996)Google Scholar
  24. 24.
    Baumert, L.D.: Cyclic difference sets. Springer, Berlin (1971)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Evgeny I. Krengel
    • 1
  1. 1.Kedah Electronics EngineeringRussia

Personalised recommendations