Advertisement

Synchronization of Boolean Dynamical Systems: A Spectral Characterization

  • Jérémy Parriaux
  • Philippe Guillot
  • Gilles Millérioux
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6338)

Abstract

In this paper a spectral characterization of the synchronization property of Boolean dynamical systems is provided. Conditions on the spectrum of the next-state function are derived for two systems coupled in a unidirectional way - also called master-slave configuration - to guarantee self-synchronization. Two kinds of self-synchronization are discussed: the statistical one and the finite one. Next, some conditions are stated for a specific input sequence to allow the system to be self-synchronizing. Some of the results are based on the notion of influence of variables, a notion that is extended to vectorial Boolean functions for the purpose of the paper. A potential application to cryptography is finally given.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boolean Functions for Cryptography and Error-Correcting Codes. In: Boolean Models and Methods in Mathematics, Computer Science, and Engineering. Cambridge Press (2010)Google Scholar
  2. 2.
    Vectorial Boolean Functions for Cryptography. In: Boolean Models and Methods in Mathematics, Computer Science, and Engineering. Cambridge Press (2010)Google Scholar
  3. 3.
    Kahn, J., Kalai, G., Linial, N.: The influence of variables on boolean functions. In: SFCS 1988: Proceedings of the 29th Annual Symposium on Foundations of Computer Science, Washington, DC, USA, pp. 68–80. IEEE Computer Society, Los Alamitos (1988)Google Scholar
  4. 4.
    Kindler, G., Safra, S.: Noise-resistant boolean-functions are juntas (2003), http://www.math.tau.ac.il/~safra/PapersAndTalks/nibfj.ps
  5. 5.
    Marichal, J.-L.: The influence of variables on pseudo-boolean functions with applications to game theory and multicriteria decision making. Discrete Applied Mathematics 107(1-3), 139–164 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Daemen, J., Paris, K.: The self-synchronzing stream cipher moustique. Technical report, e-Stream Project (2006), http://www.ecrypt.eu.org/stream/p3ciphers/mosquito/mosquito_p3.pdf
  7. 7.
    Daemen, J., Lano, J., Preneel, B.: Chosen ciphertext attack on sss. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/044 (June 2005), http://www.ecrypt.eu.org/stream/papers.html/044.pdf
  8. 8.
    Millérioux, G., Guillot, P., Amigó, J.M., Daafouz, J.: Flat dynamical systems and self-synchronizing stream ciphers (2008), http://hal.archives-ouvertes.fr/docs/00/33/18/33/PDF/FlatDS_SSSC.pdf
  9. 9.
    Millérioux, G., Guillot, P.: Self-synchronizing stream ciphers and dynamical systems: state of the art and open issues. International Journal of Bifurcation and Chaos 20(9) (September 2010)Google Scholar
  10. 10.
    Maurer, U.M.: New approaches to the design of self-synchronizing stream cipher. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 458–471. Springer, Heidelberg (1991)Google Scholar
  11. 11.
    Keller, N.: On the influence of variables on boolean functions in product spaces (May 2009), http://arxiv.org/PS_cache/arxiv/pdf/0905/0905.4216v1.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jérémy Parriaux
    • 1
  • Philippe Guillot
    • 2
  • Gilles Millérioux
    • 1
  1. 1.Research Center for Automatic Control of Nancy (CRAN UMR 7039)Nancy University, CNRSFrance
  2. 2.Laboratoire Analyse, Géométrie et Applications (LAGA UMR 7539)Université Paris 8France

Personalised recommendations