Advertisement

Nega–Hadamard Transform, Bent and Negabent Functions

  • Pantelimon Stănică
  • Sugata Gangopadhyay
  • Ankita Chaturvedi
  • Aditi Kar Gangopadhyay
  • Subhamoy Maitra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6338)

Abstract

In this paper we start developing a detailed theory of nega–Hadamard transforms. Consequently, we derive several results on negabentness of concatenations, and partially-symmetric functions. We also obtain a characterization of bent–negabent functions in a subclass of Maiorana–McFarland set. As a by-product of our results we obtain simple proofs of several existing facts.

Keywords

Boolean functions nega–Hadamard transforms bent and negabent functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carlet, C.: Two new classes of bent functions. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 77–101. Springer, Heidelberg (1994)Google Scholar
  2. 2.
    Carlet, C.: Boolean functions for cryptography and error correcting codes. In: Crama, Y., Hammer, P. (eds.) Boolean Methods and Models. Cambridge Univ. Press, Cambridge, http://www-roc.inria.fr/secret/Claude.Carlet/pubs.html
  3. 3.
    Carlet, C.: Vectorial Boolean functions for cryptography. In: Crama, Y., Hammer, P. (eds.) Boolean Methods and Models. Cambridge Univ. Press, Cambridge, http://www-roc.inria.fr/secret/Claude.Carlet/pubs.html
  4. 4.
    Cusick, T.W., Stănică, P.: Cryptographic Boolean functions and Applications. Elsevier/Academic Press (2009)Google Scholar
  5. 5.
    Danielsen, L.E., Gulliver, T.A., Parker, M.G.: Aperiodic Propagation Criteria for Boolean Functions. Inform. Comput. 204(5), 741–770 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dillon, J.F.: Elementary Hadamard difference sets. In: Proceedings of Sixth S. E. Conference of Combinatorics, Graph Theory, and Computing, Utility Mathematics, Winnipeg, pp. 237–249 (1975)Google Scholar
  7. 7.
    Dobbertin, H.: Construction of bent functions and balanced Boolean functions with high nonlinearity. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 61–74. Springer, Heidelberg (1995)Google Scholar
  8. 8.
    Dobbertin, H., Leander, G.: Bent functions embedded into the recursive framework of ℤ-bent functions. Des. Codes Cryptography 49, 3–22 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Lidl, R., Niederreiter, H.: Introduction to finite fields and their applications. Cambridge University Press, Cambridge (1983)Google Scholar
  10. 10.
    MacWilliams, F.J., Sloane, N.J.A.: The theory of error–correcting codes. North-Holland, Amsterdam (1977)zbMATHGoogle Scholar
  11. 11.
    Parker, M.G., Pott, A.: On Boolean functions which are bent and negabent. In: Golomb, S.W., Gong, G., Helleseth, T., Song, H.-Y. (eds.) SSC 2007. LNCS, vol. 4893, pp. 9–23. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Parker, M.G., Pott, A.: Personal CommunicationsGoogle Scholar
  13. 13.
    Riera, C., Parker, M.G.: One and two-variable interlace polynomials: A spectral interpretation. In: Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 397–411. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Riera, C., Parker, M.G.: Generalized bent criteria for Boolean functions. IEEE Trans. Inform. Theory 52(9), 4142–4159 (2006)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Rothaus, O.S.: On bent functions. Journal of Combinatorial Theory Series A 20, 300–305 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Sarkar, P., Maitra, S.: Cross–Correlation Analysis of Cryptographically Useful Boolean Functions and S-Boxes. Theory Comput. Systems 35, 39–57 (2002)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Sarkar, S.: On the symmetric negabent Boolean functions. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 136–143. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Savicky, P.: On the bent Boolean functions that are symmetric. European J. Comb. 15, 407–410 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Schmidt, K.U., Parker, M.G., Pott, A.: Negabent functions in the Maiorana–McFarland class. In: Golomb, S.W., Parker, M.G., Pott, A., Winterhof, A. (eds.) SETA 2008. LNCS, vol. 5203, pp. 390–402. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Zhao, Y., Li, H.: On bent functions with some symmetric properties. Discrete Appl. Math. 154, 2537–2543 (2006)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Pantelimon Stănică
    • 1
  • Sugata Gangopadhyay
    • 2
  • Ankita Chaturvedi
    • 2
  • Aditi Kar Gangopadhyay
    • 2
  • Subhamoy Maitra
    • 3
  1. 1.Department of Applied MathematicsNaval Postgraduate SchoolMontereyUSA
  2. 2.Department of MathematicsIndian Institute of Technology RoorkeeRoorkeeIndia
  3. 3.Applied Statistics UnitIndian Statistical InstituteCalcuttaIndia

Personalised recommendations