A Public Key Cryptosystem Based upon Euclidean Addition Chains

  • Fabien Herbaut
  • Pascal Véron
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6338)


Addition chains are classical tools used to speed up exponentiation in cryptographic algorithms. In this paper we proposed to use a subset of addition chains, the Euclidean addition chains, in order to define a new public key cryptosystem.


Transmission Rate Vertex Cover Decryption Process Euclidean Algorithm Side Channel Attack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bahig, H.M.: Improved generation of minimal addition chains. Computing 78(2), 161–172 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Brauer, A.: On addition chains. Bull. Amer. Math. Soc. 45, 736–739 (1939)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Chevallier-Mames, B., Naccache, D., Stern, J.: Linear bandwidth naccache-stern encryption. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 327–339. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Downey, P.J., Leong, B.L., Sethi, R.: Computing sequences with addition chains. SIAM J. Comput. 10(3), 638–646 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Goundar, R., Shiota, K., Toyonaga, M.: Spa resistant scalar multiplication using golden ration addition chain method. International Journal of Applied Mathematics 38(2), 83–88 (2008)MathSciNetGoogle Scholar
  6. 6.
    Knuth, D.E.: The Art of Computer Programming: Fundamental Algorithms, 3rd edn., vol. 2. Addison Wesley, Reading (July 1997)zbMATHGoogle Scholar
  7. 7.
    Meloni, N.: Arithmétique pour la Cryptographie basée sur les Courbes Elliptiques. Ph.D. thesis, Université de Montpellier, France (2007)Google Scholar
  8. 8.
    Meloni, N.: New point addition formulae for ECC applications. In: Carlet, C., Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 189–201. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Montgomery, P.L.: Evaluating recurrences of form X m + n = f(X m,X n,X m − n) via Lucas chains (2002),
  10. 10.
    Naccache, D., Stern, J.: A new public-key cryptosystem. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 27–36. Springer, Heidelberg (1997)Google Scholar
  11. 11.
    Sholz, A.: Aufgabe 253. Jahresbericht der deutschen Mathematiker-Vereinigung 47, 41–42 (1937)Google Scholar
  12. 12.
    Subbarao, M.: Addition chains - some results and problems. Number Theory and Applications, 555–574 (1989)Google Scholar
  13. 13.
    Yao, A.C.: On the evaluation of powers. SIAM Journal on Computing 5(1), 100–103 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Yao, A.C., Knuth, D.E.: Analysis of the substractive algorithm for greatest common divisors. Proc. Nat. Acad. Sci. USA 72(12), 4720–4722 (1975)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Fabien Herbaut
    • 1
  • Pascal Véron
    • 2
  1. 1.Université du Sud Toulon-Var, IMATH, IUFM de Nice, Université de NiceFrance
  2. 2.Université du Sud Toulon-Var, IMATHFrance

Personalised recommendations