New Constructions of Complete Non-cyclic Hadamard Matrices, Related Function Families and LCZ Sequences

  • Krystal Guo
  • Guang Gong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6338)


A Hadamard matrix is said to be completely non-cyclic (CNC) if there are no two rows (or two columns) that are shift equivalent in its reduced form. In this paper, we present three new constructions of CNC Hadamard matrices. We give a primary construction using a flipping operation on the submatrices of the reduced form of a Hadamard matrix. We show that, up to some restrictions, the Kronecker product preserves the CNC property of Hadamard matrices and use this fact to give two secondary constructions of Hadamard matrices. The applications to construct low correlation zone sequences are provided.


Hadamard matrices completely non-cyclic type low correlation zone sequences shift-distinctness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chung, J.H., Yang, K.C.: Design of m-ary low correlation zone sequence sets by interleaving. In: Golomb, S.W., Parker, M.G., Pott, A., Winterhof, A. (eds.) SETA 2008. LNCS, vol. 5203, pp. 313–321. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Craigen, R.: Hadamard matrices and designs. In: Colbourn, C.J., Dinitz, J.H. (eds.) CRC Handbook of Combinatorial Designs, pp. 370–377. CRC Press, Boca Raton (1996)Google Scholar
  3. 3.
    De Gaudenzi, R., Elia, C., Viola, R.: Bandlimited quasi-synchronous cdma: A novel satellite access technique for mobile and personal communication systems. IEEE Journal on Selected Areas in Communications 10(2), 328–343 (1992)CrossRefGoogle Scholar
  4. 4.
    Golomb, S.W., Gong, G.: Signal design for good correlation – for wireless communication, cryptography, and radar. Cambridge University Press, Cambridge (2005)zbMATHCrossRefGoogle Scholar
  5. 5.
    Gong, G., Golomb, S.W., Song, H.Y.: A note on low-correlation zone signal sets. IEEE Trans. Inform. Theory 53(7), 2575–2581 (2007)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Guo, K., Gong, G.: New constructions of complete non-cyclic hadamard matrices, related function families and lcz sequences. Technical Report, University of Waterloo, CACR 2010-14 (2010)Google Scholar
  7. 7.
    Holzmann, W.H., Kharaghani, H., Tayfeh-Rezaie, B.: Williamson matrices up to order 59. Des. Codes Cryptography 46(3), 343–352 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Jang, J.W., No, J.S., Chung, H.B., Tang, X.H.: New sets of optimal p-ary low-correlation zone sequences. IEEE Transactions on Information Theory 53(2), 815–821 (2007)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Kim, S.H., Jang, J.W., No, J.S., Chung, H.B.: New constructions of quaternary low correlation zone sequences. IEEE Transactions on Information Theory 51(4), 1469–1477 (2005)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Kim, Y.S., Jang, J.W., No, J.S., Chung, H.B.: New design of low-correlation zone sequence sets. IEEE Transactions on Information Theory 52(10), 4607–4616 (2006)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Long, B., Zhang, P., Hu, J.: A generalized qs-cdma system and the design of new spreading codes. IEEE Trans. Veh. Technol. 47(6), 1268–1275 (1998)CrossRefGoogle Scholar
  12. 12.
    Tang, X.H., Fan, P.Z.: A class of pseudonoise sequences over gf(p) with low correlation zone. IEEE Transactions on Information Theory 47(4), 1644–1649 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Tang, X.H., Udaya, P.: New recursive construction of low correlation zone sequences. In: Proceedings of Second Int. Workshop Sequence Design and Its Applications to Communication, Shimonoseki, Japan, October 10-14 (2005)Google Scholar
  14. 14.
    Turyn, R.J.: An infinite class of williamson matrices. J. Comb. Theory, Ser. A 12(3), 319–321 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Turyn, R.J.: Hadamard matrices, baumert-hall units, four-symbol sequences, pulse compression, and surface wave encodings. J. Comb. Theory, Ser. A 16(3), 313–333 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Zhou, Z.C., Tang, X.H., Gong, G.: A new class of sequences with zero or low correlation zone based on interleaving technique. IEEE Trans. Inform. Theory 54(9), 4267–4273 (2008)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Krystal Guo
    • 1
  • Guang Gong
    • 1
  1. 1.Department of Combinatorics and Optimizations, Department of Electrical and Computer EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations