Advertisement

Vectorial Conception of FCSR

  • Abdelaziz Marjane
  • Boufeldja Allailou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6338)

Abstract

In this paper, we investigate the structure of FCSR made by Goresky and Klapper. Using a vectorial construction of the objects and of the register, we extend the analysis of FCSRs. We call these registers vectorial FCSRs or VFCSRs. We obtain similar results to those of analysis of FCSRs and of d-FCSRs generating binary sequences or p-ary sequences. In fact, the AFSRs built over finite fields \(\mathbb{F}_{p^{n}}\) with n ≥ 2 suffer from an very difficult and formal analysis. But if you analyze these registers with a vectorial structure, you can decompose the output sequence into a vector of binary sequences or p-ary sequences. This method allows us to obtain very easily the period, the behavior of memory with interval optimized , the maximal period, the existence of l-sequences and the calculations become explicit and easily implementable. At the end of this paper, we implement the quadratic case (\(\mathbb{F}_{2^{2}}\) case) and present the conclusions about pseudorandom properties of quadratic l-sequences which are tested by NIST STS package. In conclusion, VFCSRs are easy to implement in software and hardware and have excellent pseudorandomn property.

Keywords

Binary Sequence Canonical Basis Output Sequence Irreducible Polynomial Primitive Root 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goresky, M., Klapper, A.: Feedback shift registers, combiners with memory, and 2-adic span. Journal of Cryptology 10, 111–147 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Goresky, M., Klapper, A.: 2-adic shift registers. In: Anderson, R. (ed.) FSE 1993. LNCS, vol. 809, pp. 174–178. Springer, Heidelberg (1994)Google Scholar
  3. 3.
    Klapper, A.: Feedback with Carry Shift Registers over Finite Fields (extended abstract). In: FSE 1994, pp. 170–178 (1994)Google Scholar
  4. 4.
    Goresky, M., Klapper, A.: Feedback Registers Based on Ramified Extensions of the 2-Adic Numbers (Extended Abstract). In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 215–222. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  5. 5.
    Goresky, M., Klapper, A.: Periodicity and Correlation Properties of d-FCSR Sequences. Des. Codes Cryptography 33(2), 123–148 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Klapper, A., Xu, J.: Algebraic Feedback Shift Registers. Theor. Comput. Sci. 226(1-2), 61–92 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Goresky, M., Klapper, A.: Algebraic Shift Register Sequences (2009), http://www.cs.uky.edu/~klapper/algebraic.html
  8. 8.
    Zheng, Y., Tang, X., He, D., Xu, L.: Investigation on pseudorandom properties of FCSR sequence. In: Proc. IEEE International Conference on Communications, Circuits and Systems, vol. I, pp. 66–70 (2005)Google Scholar
  9. 9.
  10. 10.
  11. 11.
    Arnault, F., Berger, T.P.: Design and Properties of a New Pseudorandom Generator Based on a Filtered FCSR Automaton. IEEE Transaction on Computers 54(11), 1374–1383 (2005)CrossRefGoogle Scholar
  12. 12.
    Berger, T., Arnault, F., Lauradoux, C.: Description of F-FCSR-8 and F-FCSR-H stream ciphers. In: SKEW - Symmetric Key Encryption Workshop, An ECRYPT STVL event, Aarhus, Danemark (May 2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Abdelaziz Marjane
    • 1
  • Boufeldja Allailou
    • 2
  1. 1.LAGAUMR CNRS 7539VilletaneuseFrance
  2. 2.LAGAUMR CNRS 7539Saint-DenisFrance

Personalised recommendations