Advertisement

Clock-Controlled FCSR Sequence with Large Linear Complexity

  • Zhen Pan
  • Wei Su
  • Xiaohu Tang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6338)

Abstract

In this paper, we investigate the stop-and-go clock-controlled generator based on FCSR. The output sequence is proven to have large linear complexity. Further, the experimental results show that most of the output sequences also have almost optimal 2-adic complexity.

Keywords

FCSR clock-controlled sequence linear complexity 2-adic complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnault, F., Berger, T.P.: F-FCSR: Design of a new class of stream ciphers. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 83–97. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Arnault, F., Berger, T.P., Lauradoux, C.: Update on F-FCSR stream cipher. In: ECRYPT - Network of Excellence in Cryptology (Call for stream Cipher Primitives - Phase 2 2006) (2006), http://www.ecrypt.eu.org/stream/
  3. 3.
    Arnault, F., Berger, T.P., Lauradoux, C., Minier, M., Pousse, B.: A new approach for FCSRs. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 433–448. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    De Weger, B.M.M.: Approximation lattices of p-adic numbers. Journal of Number Theory 24, 70–88 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Gollmann, D., Chambers, W.G.: Clock-controlled shift registers: a review. IEEE Journal on Selected Areas in Communications 7(4), 525–533 (1989)CrossRefGoogle Scholar
  6. 6.
    Goresky, M., Kalapper, A.: Feedback register based on ramified extensions of the 2-adic number. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 215–222. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  7. 7.
    Hell, M., Johansson, T.: Breaking the F-FCSR-H stream cipher in real time. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 557–569. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Klapper, A., Goresky, M.: 2-adic shift register. In: Fast Software Encryption 2nd International Workshop. LNCS, vol. 809, pp. 174–178. Springer, Berlin (1994)Google Scholar
  9. 9.
    Klapper, A., Goresky, M.: Feedback shift registers, 2-adic span and combiners with memory. Journal of Cryptology 10(2), 111–147 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Lidl, R., Niederreiter, H.: Introduction to finite fields and their applications. Cambridge Univ. Press, Cambridge (1986)zbMATHGoogle Scholar
  11. 11.
    Massey, J.L.: Shift-register synthesis and BCH decoding. IEEE Transactions on Information Theory 15(1), 122–127 (1969)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Rueppel, R.: Anaysis and design of stream ciphers. Springer, Heidelberg (1986)Google Scholar
  13. 13.
    Rueppel, R., Staffelbach, O.: Products of linear recurring sequences with maximum complexity. IEEE Transactions on Information Theory 33(1), 124–131 (1987)zbMATHCrossRefGoogle Scholar
  14. 14.
    Seo, C., Lee, S., Sung, Y., Han, K., Kim, S.: A lower bound on the linear span of FCSR. IEEE Transactions on Information Theory 46(2), 691–693 (2000)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Zhen Pan
    • 1
  • Wei Su
    • 1
  • Xiaohu Tang
    • 1
  1. 1.Key Laboratory of Information Coding and TransmissionSouthwest Jiaotong UniversityP.R. of China

Personalised recommendations