Advertisement

Power Permutations in Dimension 32

  • Emrah ÇakÇak
  • Philippe Langevin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6338)

Abstract

In this note, we analyze power permutations having a three valued spectrum. We give new results and new proofs of results previously obtained by coding theory. We apply them to prove that Hellesth’s conjecture is true for dimension 32.

Keywords

Fourier Spectrum Fourier Inversion Numerical Project Main Conjecture Positive Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Calderbank, A.R., Blokhuis, A.: (unpublished)Google Scholar
  2. 2.
    Calderbank, A.R., McGuire, G., Poonen, B., Rubinstein, M.: On a conjecture of Helleseth regarding pairs of binary m-sequences. IEEE Trans. Inform. Theory 42(3), 988–990 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Helleseth, T.: Some results about the cross-correlation function between two maximal linear sequences. Discrete Math. 16(3), 209–232 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Katz, N., Livné, R.: Sommes de Kloosterman et courbes elliptiques universelles en caractéristiques 2 et 3. C. R. Acad. Sci. Paris Sér. I. Math. 309(11), 723–726 (1989)zbMATHGoogle Scholar
  5. 5.
    Langevin, P.: Numerical projects page (2007), http://langevin.univ-tln.fr/project/spectrum
  6. 6.
    Langevin, P., Véron, P.: Non-linearity of power functions. Designs Codes and Cryptography 37(1) (2005)Google Scholar
  7. 7.
    McGuire, G.M., Calderbank, A.R.: Proof of a conjecture of Sarwate and Pursley regarding pairs of binary m-sequences. IEEE Trans. Inform. Theory 41(4), 1153–1155 (1995)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Emrah ÇakÇak
    • 1
  • Philippe Langevin
    • 2
  1. 1.Department of MathematicsMimar Sinan Fine Arts University 
  2. 2.Imathuniversité du sud Toulon Var. 

Personalised recommendations