On the Autocorrelation and the Linear Complexity of q-Ary Prime n-Square Sequences

  • Fang Liu
  • Daiyuan Peng
  • Xiaohu Tang
  • Xianhua Niu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6338)


Cryptographically strong sequences should have long periods, large linear complexity, low correlation, and balance properties. In this paper, we determine the autocorrelation of the q-ary prime n-square sequences with length p n , where p is an odd prime, n is a positive integer and q is a divisor of p − 1. When q is a prime, we also determine the linear complexity of the prime n-square sequences over the prime field F q . It is shown that these sequences have good linear complexity and balance properties, but don’t have desirable autocorrelation properties.


Generalized cyclotomy prime n-square sequence  autocorrelation linear complexity balance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burton, D.M.: Elementary Number Theory, 4th edn. McGraw-Hill International Editions, New York (1998)zbMATHGoogle Scholar
  2. 2.
    Ding, C.: Linear Complexity of Generalized Cyclotomic Binary Sequences of Order 2. Finite Fields and Their Applications 3, 159–174 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ding, C., Helleseth, T., Shan, W.: On the Linear Complexity of Legendre Sequences. IEEE Trans. Inform. Theory 44, 1276–1278 (1998)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Ding, C., Helleseth, T.: New Generalized Cyclotomy and its Applications. Finite Fields and their Applications 4, 140–166 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ding, C.: Linear Complexity of Some Generalized Cyclotomic Sequences. International Journal on Algebra and Computation 8, 431–442 (1998)zbMATHCrossRefGoogle Scholar
  6. 6.
    Bai, E., Liu, X., Xiao, G.: Linear Complexity of New Generalized Cyclotomic Sequences of Order Two of Length pq. IEEE Trans. Inform. Theory 51, 1849–1853 (2005)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Yan, T., Sun, R., Xiao, G.: Autocorrelation and Linear Complexity of the New Generalized Cyclotomic Sequences. IEICE Trans. Fundamentals E90-A, 857–864 (2007)CrossRefGoogle Scholar
  8. 8.
    Yan, T., Hong, L., Xiao, G.: The Linear Complexity of New Generalized Cyclotomic Binary Sequences of Order Four. Information Sciences 178, 807–815 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Kim, Y.J., Jin, S.Y., Song, H.Y.: Linear Complexity and Autocorrelation of Prime Cube Sequences. In: Boztaş, S., Lu, H.-F(F.) (eds.) AAECC 2007. LNCS, vol. 4851, pp. 188–197. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Kim, Y.J., Song, H.Y.: Linear Complexity of Prime n-Square Sequences. In: IEEE International Symposium on Information Theory, Toronto, Canada, pp. 2405–2408 (2008)Google Scholar
  11. 11.
    Meidl, W.: Remarks on a Cyclotomic Sequence. Designs, Codes, and Cryptography 51, 33–43 (2009)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Sidelnikov, V.M.: Some k-Valued Pseudo-random Sequences and Nearly Equidistance Codes. Problems of Information Transmission 5, 12–16 (1969)MathSciNetGoogle Scholar
  13. 13.
    Storer, T.: Cyclotomy and Difference Sets. Markham Publishing Co., Chicago (1967)zbMATHGoogle Scholar
  14. 14.
    Whiteman, A.L.: A Family of Difference Sets. Illinois J. Math. 6, 107–121 (1962)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Lidl, R., Niederreiter, H.: Finite Fields. In: Encyclopedia of Mathematics and its Applications. Addison-Wesley, Reading (1983)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Fang Liu
    • 1
  • Daiyuan Peng
    • 1
  • Xiaohu Tang
    • 1
  • Xianhua Niu
    • 1
  1. 1.Key Laboratory of Information Coding and TransmissionSouthwest Jiaotong UniversitySichuanP.R. China

Personalised recommendations