Skip to main content

Evolving a Single Scalable Controller for an Octopus Arm with a Variable Number of Segments

  • Conference paper
Book cover Parallel Problem Solving from Nature, PPSN XI (PPSN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6239))

Included in the following conference series:

Abstract

While traditional approaches to machine learning are sensitive to high-dimensional state and action spaces, this paper demonstrates how an indirectly encoded neurocontroller for a simulated octopus arm leverages regularities and domain geometry to capture underlying motion principles and sidestep the superficial trap of dimensionality. In particular, controllers are evolved for arms with 8, 10, 12, 14, and 16 segments in equivalent time. Furthermore, when transferred without further training, solutions evolved on smaller arms retain the fundamental motion model because they simply extend the general kinematic concepts discovered at the original size. Thus this work demonstrates that dimensionality can be a false measure of domain complexity and that indirect encoding makes it possible to shift the focus to the underlying conceptual challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bongard, J.C., Pfeifer, R.: Evolving complete agents using artificial ontogeny. In: Morpho-functional Machines: The New Species (Designing Embodied Intelligence), pp. 237–258. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Clune, J., Beckmann, B.E., Ofria, C., Pennock, R.T.: Evolving coordinated quadruped gaits with the hyperneat generative encoding. In: Proceedings of the IEEE Congress on Evolutionary Computing Special Section on Evolutionary Robotics. IEEE Press, Los Alamitos (May 2009)

    Google Scholar 

  3. D’Ambrosio, D.B., Stanley, K.O.: A novel generative encoding for exploiting neural network sensor and output geometry. In: Proceedings of the 9th annual conference on Genetic and Evolutionary Computation, pp. 974–981. ACM, New York (2007)

    Chapter  Google Scholar 

  4. Engel, Y., Mannor, S., Meir, R.: Bayes meets Bellman: The Gaussian process approach to temporal difference learning. In: Proceedings of the 20th International Conference on Machine Learning, vol. 20, pp. 154–161. AAAI Press, Menlo Park (2003)

    Google Scholar 

  5. Engel, Y., Szabo, P., Volkinshtein, D.: Learning to control an octopus arm with gaussian process temporal difference methods. Advances in Neural Information Processing Systems 18, 347–354 (2006)

    Google Scholar 

  6. Floreano, D., Dürr, P., Mattiussi, C.: Neuroevolution: from architectures to learning. Evolutionary Intelligence 1(1), 47–62 (2008)

    Article  Google Scholar 

  7. Gauci, J., Stanley, K.O.: Generating large-scale neural networks through discovering geometric regularities. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp. 997–1004. ACM, New York (2007)

    Chapter  Google Scholar 

  8. Gauci, J., Stanley, K.O.: Autonomous evolution of topographic regularities in artificial neural networks. Neural Computation, 38 (2010) (to appear)

    Google Scholar 

  9. Hornby, G.S., Pollack, J.B.: Creating high-level components with a generative representation for body-brain evolution. Artificial Life 8(3), 223–246 (2002)

    Article  Google Scholar 

  10. James, D., Tucker, P.: ANJI homepage (2004), http://anji.sourceforge.net/

  11. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of Artificial Intelligence Research 4(1), 102–138 (1996)

    Google Scholar 

  12. Kier, W.M., Smith, K.K.: Tongues, tentacles and trunks: the biomechanics of movement in muscular-hydrostats. Zoological Journal of the Linnean Society 83, 307–324 (1985)

    Article  Google Scholar 

  13. Stanley, K.O.: Compositional pattern producing networks: A novel abstraction of development. Genetic Programming and Evolvable Machines 8(2), 131–162 (2007)

    Article  MathSciNet  Google Scholar 

  14. Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based indirect encoding for evolving large-scale neural networks. Artificial Life 15(2) (2009)

    Google Scholar 

  15. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evolutionary Computation 10(2), 99–127 (2002)

    Article  Google Scholar 

  16. Stanley, K.O., Miikkulainen, R.: A taxonomy for artificial embryogeny. Artificial Life 9(2), 93–130 (2003)

    Article  Google Scholar 

  17. Stanley, K.O., Miikkulainen, R.: Competitive coevolution through evolutionary complexification. Journal of Artificial Intelligence Research 21(1), 63–100 (2004)

    Google Scholar 

  18. Sutton, R.S., Barto, A.G.: Reinforcement Learning: an introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  19. Yao, X.: Evolving artificial neural networks. Proc. of the IEEE 87(9), 1423–1447 (1999)

    Article  Google Scholar 

  20. Yekutieli, Y., Sagiv-Zohar, R., Aharonov, R., Engel, Y., Hochner, B., Flash, T.: Dynamic model of the octopus arm. I. Biomechanics of the octopus reaching movement. Journal of Neurophysiology 94(2), 1443–1506 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Woolley, B.G., Stanley, K.O. (2010). Evolving a Single Scalable Controller for an Octopus Arm with a Variable Number of Segments. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds) Parallel Problem Solving from Nature, PPSN XI. PPSN 2010. Lecture Notes in Computer Science, vol 6239. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15871-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15871-1_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15870-4

  • Online ISBN: 978-3-642-15871-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics