Advertisement

Ultrathin n-Channel and p-Channel SOI MOSFETs

  • F. GámizEmail author
  • L. Donetti
  • C. Sampedro
  • A. Godoy
  • N. Rodríguez
  • F. Jiménez-Molinos
Chapter
  • 1.7k Downloads
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

We review the electrostatic and transport properties of charge carriers in ultrathin single gate (SG) and double gate (DG) SOI transistors. Both electron and hole inversion layers are studied and the influence of silicon thickness and of different crystallographic orientations is evaluated. The origin of volume inversion effect and its consequences are investigated for both types of carrier and for the different surface orientations considered. Finally we discuss the importance of correctly modeling phonons in ultra-thin SOI structures by studying acoustic phonon confinement and its impact on carrier mobility.

Keywords

Silicon Layer Inversion Layer Surface Orientation Inversion Charge Silicon Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The work of L.D. is done as part of the program Ramón y Cajal of the Ministerio de Ciencia e Innovación (M.C.I.) of Spain. Financial support from M.C.I. (contracts TEC2008-06758-C02-01 and FIS2008-05805), Junta de Andalucía (project TIC-P06-1899), EU EUROSOI + Thematic Network (FP7-CA-216373) and EU NANOSIL Network of Excellence (FP7-NOE-216171) is also acknowledged.

References

  1. 1.
    Cristoloveanu, S., Li, S.S.: Electrical Characterization of Silicon on Insulator Materials And Devices. Kluwer, Boston (1995)Google Scholar
  2. 2.
    Balestra, F., Cristolovenau, S., Benachir, M., Brini, J., Elewa, T.: Double-gate silicon-on-insulator transistor with volume inversion: A new device with greatly enhanced performance. IEEE Electron Device Lett. 8, 410 (1987)CrossRefGoogle Scholar
  3. 3.
    Gamiz, F., Fischetti, M.V.: Monte Carlo simulation of double-gate silicon-on-insulator inversion layers: the role of volume inversion. J. Appl. Phys. 89, 5487 (2001)Google Scholar
  4. 4.
    Fischetti, M.V., Laux, S.E.: Monte Carlo study of electron transport in inversion layers. Phys. Rev. B 48, 2244 (1993)CrossRefGoogle Scholar
  5. 5.
    Luttinger, J.M., Kohn, W.: Motion of electrons and holes in perturbed periodic fields. Phys. Rev. 97, 869 (1955)zbMATHCrossRefGoogle Scholar
  6. 6.
    Fischetti, M.V., Ren, Z., Solomon, P.M., Yang, M., Rim, K.: Six-band k·p calculation of the hole mobility in silicon inversion layers: dependence con surface orientation, strain and silicon thickness. J. Appl. Phys. 94, 1079 (2003)CrossRefGoogle Scholar
  7. 7.
    Donetti, L., Gamiz, F., Rodriguez, N.: Simulation of hole mobility in two-dimensional systems. Semicond. Sci. Technol. 24, 035016 (2009)CrossRefGoogle Scholar
  8. 8.
    Pham, A., Jungemann, C., Meinerzhagen, B.: Physics-based modeling of hole inversion-layer mobility in strained-SiGe-on-insulator. IEEE Trans. Electron Devices 54, 2174 (2007)CrossRefGoogle Scholar
  9. 9.
    Zhang, Y., Kim, J., Fischetti, M.V.: Self-consistent calculation for valence subband structure and hole mobility in p-channel inversion layers. J. Comput. Electron. 7, 176 (2008)CrossRefGoogle Scholar
  10. 10.
    Rideau, D., Feraille, M., Michaillat, M., Niquet, Y.M., Tavernier, C., Jaouen, H.: On the validity of the effective mass approximation and the Luttinger k·p model in fully depleted SOI MOSFETs. Solid-State Electron. 53, 452 (2009)CrossRefGoogle Scholar
  11. 11.
    Jacoboni, C., Reggiani, L.: The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys. 55, 645 (1983)CrossRefGoogle Scholar
  12. 12.
    Fischetti, M.V.: Long-range Coulomb interactions in small Si devices. Part II. Effective electron mobility in thin-oxide structures. J. Appl. Phys. 89, 1232 (2001)CrossRefGoogle Scholar
  13. 13.
    Gamiz, F., Roldan, J.B., Cartujo-Cassinello, P., Lopez-Villanueva, J.A., Cartujo, P.: Role of surface-roughness scattering in double gate silicon-on-insulator inversion layer. J. Appl. Phys. 89, 1764 (2001)CrossRefGoogle Scholar
  14. 14.
    Donetti, L., Gamiz, F., Rodriguez, N., Godoy, A., Sampedro, C.: The effect of surface roughness scattering on hole mobility in double gate silicon-on-insulator devices. J. Appl. Phys. 106, 023705 (2009)CrossRefGoogle Scholar
  15. 15.
    Celler, G.C., Cristoloveanu, S.: Frontiers of silicon-on-insulator. J. Appl. Phys. 93, 4955 (2003)CrossRefGoogle Scholar
  16. 16.
    Gamiz, F., Godoy, A., Donetti, L., Sampedro, C., Roldan, J.B., Ruiz, F., Tienda, I., Rodriguez, N., Jimenez-Molinos, F.: Monte Carlo simulation of nanoelectronic devices. J. Comput. Electron. 8, 174–191 (2009)CrossRefGoogle Scholar
  17. 17.
    Rahman, A., Lundstrom, M.S., Ghosh, A.W.: Generalized effective-mass approach for n-type metal-oxide-semiconductor field effect transistors on arbitrarily oriented wafers. J. Appl. Phys. 97, 053702 (2005)CrossRefGoogle Scholar
  18. 18.
    Yang, M., Gusev, E.P., Ieong, M., Gluschenkov, O., Boyd, D.C., Chan, K.K., et al.: Performance dependence of CMOS on silicon substrate orientation for ultrathin oxynitride and HfO2 gate dielectrics. IEEE Electron Devices Lett. 24, 339 (2003)CrossRefGoogle Scholar
  19. 19.
    Irie, H., Kita, K., Kyuno, K., Toriumi, A.: In-plane mobility anisotropy and universallity under uni-axial strains in n- and p-MOS inversion layers on (100), (110), and (111) Si. In: IEDM ’04, p. 225 (2004)Google Scholar
  20. 20.
    Bannov, N., Mitin, V., Stroscio, M.: Confined acoustic phonons in a free-standing quantum well and their interaction with electrons. Phys. Stat. Sol. (B) 183, 131 (1994)CrossRefGoogle Scholar
  21. 21.
    Donetti, L., Gámiz, F., Roldán, J.B., Godoy, A.: Acoustic phonon confinement in silicon nanolayers: effect on electron mobility. J. Appl. Phys. 100, 013701 (2006)CrossRefGoogle Scholar
  22. 22.
    Donetti, L., Gamiz, F., Rodriguez, N., Godoy, A.: Hole mobility in ultrathin double-gate SOI devices: the effect of acoustic phonon confinement. IEEE Electron Device Lett. 30, 1338–1340 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • F. Gámiz
    • 1
    Email author
  • L. Donetti
    • 1
  • C. Sampedro
    • 1
  • A. Godoy
    • 1
  • N. Rodríguez
    • 1
  • F. Jiménez-Molinos
    • 1
  1. 1.Nanoelectronic Research Group, Departamento de ElectrónicaUniversidad de GranadaGranadaSpain

Personalised recommendations