Advertisement

FinFETs and Their Futures

  • N. HoriguchiEmail author
  • B. Parvais
  • T. Chiarella
  • N. Collaert
  • A. Veloso
  • R. Rooyackers
  • P. Verheyen
  • L. Witters
  • A. Redolfi
  • A. De Keersgieter
  • S. Brus
  • G. Zschaetzsch
  • M. Ercken
  • E. Altamirano
  • S. Locorotondo
  • M. Demand
  • M. Jurczak
  • W. Vandervorst
  • T. Hoffmann
  • S. Biesemans
Chapter
  • 2k Downloads
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

FinFET is a promising device structure for scaled CMOS logic/memory applications in 22 nm technology and beyond, thanks to its good short channel effect (SCE) controllability and its small variability. Scaled SRAM and analog circuit are promising candidates for finFET applications and some demonstrations for them are already reported. On the other hand, for finFETs production, quite a lot of process challenges are required due to difficult fin/gate patterning in the 3D structure, conformal doping to fin and high access resistance in extremely thin body, etc. The fin/gate patterning can be improved by optimization of patterning stack, patterning scheme and etch chemistry. Alternative doping techniques show good conformal doping in 3D structure in finFETs. High access resistance is reduced by junction optimization and strain boaster technique.

Keywords

Short Channel Effect Patterning Scheme Hard Mask Line Edge Roughness Double Patterning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Wong, H.S.P., Frank, D.J., Solomon, P.M., et al.: Device design considerations for double-gate, ground-plane, and single-gated ultra-thin SOI MOSFET’s at the 25 nm channel length generation. Int. Electron Dev. Meeting Tech. Digest. 407–410 (1998)Google Scholar
  2. 2.
    Parvais, B., Mercha, A., Collaert, N., et al.: The device architecture dilemma for CMOS technologies: opportunities & challenges of Finfet over planar mosfet. In: International Symposium on VLSI Technology, Systems and Applications, pp. 80–81 (2009)Google Scholar
  3. 3.
    Chiarella, T., Witters, L., Mercha, A., et al.: Migrating from planar to FinFET for further cmos scaling: SOI or bulk? In: ESSDERC Conference Proceedings, pp. 85–88 (2009)Google Scholar
  4. 4.
    Rudenko, T., Kilchytska, V., Collaert, N., et al.: Carrier mobility in undoped triple-gate FinFET structures and limitations of its description in terms of top and sidewall channel mobilities. IEEE Trans. Electron Dev. 55, 3532–3541 (2008)CrossRefGoogle Scholar
  5. 5.
    Collaert, N., von Arnim, K., Rooyackers, R., et al.: Low-voltage 6T FinFET SRAM cell with high SNM using HfSiON/TiN gate stack, fin widths down to 10 nm and 30 nm gate length. In: International Conference on IC Design and Technology, pp. 59–62 (2008)Google Scholar
  6. 6.
    Merelle, T., Curatola, G., Nackaerts, A., et al.: First observation of FinFET specific mismatch behavior and optimization guidelines for SRAM scaling. In: International Electron Devices Meeting Technical Digest, pp. 241–244 (2008)Google Scholar
  7. 7.
    Veloso, A., Demuynck, S., Ercken, M., et al.: Demonstration of scaled 0.099 μm2 FinFET 6T-SRAM cell using full-field EUV lithography for (Sub-)22 nm node single-patterning technology. In: International Electron Devices Meeting Technical Digest, pp. 301–304 (2009)Google Scholar
  8. 8.
    Guillorn, M., Chang, J., Pyzyna, A., et al.: Trigate 6T SRAM scaling to 0.06 μm2. In: International Electron Devices Meeting Technical Digest, pp. 961–963 (2009)Google Scholar
  9. 9.
    Horiguchi, N., Demuynck, S., Ercken, M., et al.: High yield sub-0.1 μm2 6T-SRAM cells, featuring High-k/Metal-Gate, Finfet devices, double gate patterning, a novel fin etch strategy, full-field EUV lithography and optimized junction design & layout. In: Symposium on VLSI Technology, pp. 23–24 (2010)Google Scholar
  10. 10.
    Wambacq, P., Mercha, A., Scheir, K., et al.: Advanced planar bulk and multigate CMOS technology: analog-circuit benchmarking up to mm-wave frequencies. In: International Solid-State Circuits Conference, pp. 528–529 (2008)Google Scholar
  11. 11.
    Ercken, M., Altamirano-Sanchez, E., Baerts, C., et al.: Challenges in using optical lithography for the building of a 22 nm node 6T-SRAM cell. Microelectronic Eng. 87, 993–996 (2010)CrossRefGoogle Scholar
  12. 12.
    Choi, Y.K., Lindert, N., Xuan, P., et al.: Sub-20 nm CMOS FinFET technologies. In: International Electron Devices Meeting Technical Digest, pp. 421–424 (2001)Google Scholar
  13. 13.
    Rooyackers, R., et al.: (2006) Doubling or quadrupling MuGFET fin integration scheme with higher pattern fidelity, lower CD variation and higher layout efficiency. In: International Electron Devices Meeting Technical Digest, pp. 168–171 (2001)Google Scholar
  14. 14.
    Mody, J., Duffy, R., Eyben, P., et al.: Experimental studies of dose retention and activation in fin field-effect-transistor-based structures. J. Vac. Sci. Technol. B 28, 1 (2010)CrossRefGoogle Scholar
  15. 15.
    Lenoble, D., Anil, K.G., De Keersgieter, A., et al.: Enhanced performance of PMOS MUGFET via integration of conformal plasma-doped source/drain extensions. In: Symposium on VLSI Technology, pp. 168–169 (2006)Google Scholar
  16. 16.
    Collaert, N., Rooyackers, R., Clemente, F., et al.: Performance enhancement of MUGFET devices using super critical strained-SOI (SC-SSOI) and CESL. In: Symposium on VLSI Technology, pp. 176–177 (2006)Google Scholar
  17. 17.
    Verheyen, P., Collaert, N., Rooyackers, R., et al.: 25% Drive current improvement for p-type multiple gate FET (MuGFET) devices by the introduction of recessed Si0.8Ge0.2 in the source and drain regions. In: Symposium on VLSI Technology, pp. 194–195 (2005)Google Scholar
  18. 18.
    Kavalieros, J., Doyle, B., Datta, S., et al.: Tri-gate transistor architecture with high-k Gate dielectrics, metal gates and strain engineering. In: Symposium on VLSI Technology, pp. 62–63 (2006)Google Scholar
  19. 19.
    Chang, C.Y., Lee, T.L., Wann, C., et al.: A 25-nm gate-length FinFET transistor module for 32 nm node. In: International Electron Devices Meeting Technical Digest, pp. 293–296 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • N. Horiguchi
    • 1
    Email author
  • B. Parvais
    • 1
  • T. Chiarella
    • 1
  • N. Collaert
    • 1
  • A. Veloso
    • 1
  • R. Rooyackers
    • 1
  • P. Verheyen
    • 1
  • L. Witters
    • 1
  • A. Redolfi
    • 1
  • A. De Keersgieter
    • 1
  • S. Brus
    • 1
  • G. Zschaetzsch
    • 2
  • M. Ercken
    • 1
  • E. Altamirano
    • 1
  • S. Locorotondo
    • 1
  • M. Demand
    • 1
  • M. Jurczak
    • 1
  • W. Vandervorst
    • 2
  • T. Hoffmann
    • 1
  • S. Biesemans
    • 1
  1. 1.IMEC VZWLeuvenBelgium
  2. 2.Instituut voor Kern-en Stralingsfysica, K. U. LeuvenLeuvenBelgium

Personalised recommendations