Advertisement

Silicon-based Devices and Materials for Nanoscale FETs

  • Francis BalestraEmail author
Chapter
  • 1.8k Downloads
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

Silicon on insulator (SOI)-based devices seem to be the best candidates for the ultimate integration of integrated circuits on silicon down to nm structures. An overview of the performance of nanoscale FETs, based on innovative concepts, technologies and device architectures, is addressed. The impact of alternative channel materials, source-drain contacts and multi-gates/channels on the performance and physical mechanisms in ultimate MOSFETs is highlighted. The interest of multi gate emerging and beyond-CMOS nanodevices for long term applications, based on nanowires or small slope switch structures for ultra low power applications is also presented. Finally, the flexibility of multi-gate and nanowire SOI structures for boosting the scalability and performance of DRAM, SRAM and flash memories is outlined.

Keywords

Flash Memory Gate Length Subthreshold Slope Subthreshold Swing Double Gate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was partially supported by the European Network of Excellence NANOSIL (FP7) devoted to Silicon-based Nanodevices.

References

  1. 1.
    ITRS Roadmap. http://www.itrs.net/
  2. 2.
    ENIAC Strategic Research Agenda. http://www.eniac.eu/web/SRA/local_index.php
  3. 3.
    Balestra, F.: SOI Devices. Wiley Encyclopedia of Electrical and Electronics Engineering. Wiley, New York (1999)Google Scholar
  4. 4.
    Cristoloveanu, S., Balestra, F.: Silicon on insulator: technology and devices. In: Morkoc, H. (ed.) Advanced Semiconductor and Organic Nano-techniques. Academic Press, New York (2003)Google Scholar
  5. 5.
    Driussi, F., Esseni, D., Selmi, L., Schmidt, M., Lemme, M.C., Kurz, H., Buca, D., Mantl, S., Luysberg, M., Loo, R., Nguyen, D., Reiche, M.: Fabrication, characterization and modeling of strained SOI MOSFETs with very large effective mobility. In: Proceeding of the European Solid State Device Research Conference (ESSDERC), Munich, p. 315 (2007)Google Scholar
  6. 6.
    Feste, S.F., Knoch, J., Habicht, S., Buca, D., Zhao, Q.T., Mantl, S.: Performance enhancement of uniaxially-tensile strained Si NW-nFETs fabricated by lateral strain relaxation of SOI. In: Proc. ULIS, Juliech, p. 109 (2009)Google Scholar
  7. 7.
    Uchida, K., Zednik, R., Lu, C.H.: Experimental study of uniaxial and biaxial strain effects on carrier mobility in bulk and ultra-thin-body SOI MOSFETs. In: Proc. IEDM, San Francisco, p. 229 (2004)Google Scholar
  8. 8.
    Barral, V., Poiroux, T., Andrieu, F., Buj-Dufournet, C., Faynot, O., Ernst, T., Brevard, L., Fenouillet-Beranger, C., Lafond, D., Hartmann, J.M., Vidal, V., Allain, F., Daval, N., Cayrefourcq, I., Tosti, L., Munteanu, D., Autran, J.L., Deleonibus, S.: Strained FDSOI CMOS technology scalability down to 2.5 nm film thickness and 18 nm gate length with a TiN/HfO2 gate stack. In: Proc. IEDM, Washington, p. 61 (2007)Google Scholar
  9. 9.
    Larrieu, G., Dubois, E., Valentin, R., Breil, N., Danneville, F., Dambrine, G., Raskin, J.P., Pesant, J.C.: Low temperature implementation of dopant-segregated band-edge metallic S/D junctions in thin-body SOI p-MOSFETs. In: Proc. IEDM, Washington, p. 147 (2007)Google Scholar
  10. 10.
    Zhang, Z., Qiu, A., Liu, R., Ostling, M., Zhang, S.L.: Schottky-barrier height tuning by means of ion implantation into preformed silicide films followed by drive-in anneal. Electron Device Lett. 28, 565 (2007)CrossRefGoogle Scholar
  11. 11.
    Larrieu, G., Yarekha, D.A., Dubois, E., Breil, N., Faynot, O.: Arsenic-segregated rare-earth silicide junctions: reduction of Schottky barrier and integration in metallic n-MOSFETs on SOI. IEEE Electron Device Lett. 30, 1266–1268 (2009)CrossRefGoogle Scholar
  12. 12.
    Balestra, F., Cristoloveanu, S., Benachir, M., Brini, J.: Double-gate silicon-on-insulator transistor with volume inversion: a new device with greatly enhanced performance. IEEE Electron Device Lett. 8, 410 (1987)CrossRefGoogle Scholar
  13. 13.
    Skotnicki, T.: Silicon-on-nothing devices. International Summer School MIGAS’2008, Grenoble (2008)Google Scholar
  14. 14.
    Eminente, S., Esseni, D., Palestri, P., Fiegna, C., Selmi, L., Sangiorgi, E.: Enhanced ballisticity in nano-MOSFETs along the ITRS roadmap: a Monte Carlo study. In: Proc. IEDM, San Francisco, p. 609 (2004)Google Scholar
  15. 15.
    Bescond, M., Néhari, K., Autran, J.L., Cavassilas, N., Munteanu, D., Lannoo, M.: 3D quantum modeling and simulation of multi-gate nanowire MOSFETs. In: Proc. IEDM, San Francisco, p. 617 (2004)Google Scholar
  16. 16.
    Saint Martin, J., Bournel, A., Dollfus, P.: Comparison of multiple-gate MOSFET architectures using Monte-Carlo simulation. In: Proc. ULIS, Bologna, p. 61 (2005)Google Scholar
  17. 17.
    Bansal, A., Paul, B.C., Roy, K.: Impact of gate underlap on gate capacitance and gate tunneling current in 16 nm DGMOS devices. In: Proceedings of the IEEE International SOI Conference, Charleston, p. 94 (2004)Google Scholar
  18. 18.
    Raphay, Q., Clerc, R., Ghibaudo, G., Pananakakis, G.: Impact of source-to-drain tunnelling on the scalability of arbitrarily oriented alternative channel material nMOSFETs. Solid-State Electron. 52, 1474–1481 (2008)CrossRefGoogle Scholar
  19. 19.
    Bernard, E., Ernst, T., Guillaumot, B., Vulliet, N., Barral, V., Maffini-Alvaro, V., Andrieu, F., Vizioz, C., Campidelli, Y., Gautier, P., Hartmann, J., Kies, R., Delaye, V., Aussenac, F., Poiroux, T., Coronel, P., Souifi, A., Skotnicki, T., Deleonibus, S.: Novel integration process and performances analysis of low standby power (LSTP) 3D multi-channel CMOSFET (MCFET) on SOI with metal/high-K gate stack. In: Proceedings of Symposium on VLSI Technology, Honolulu, p. 16 (2008)Google Scholar
  20. 20.
    Weber, O., Faynot, O., Andrieu, F., Buj-Dufournet, C., Allain, F., Scheiblin, P., Foucher, J., Daval, N., Lafond, D., Tosti, L., Brevard, L., Rozeau, O., Fenouillet-Beranger, C., Marin, M., Boeuf, F., Delprat, D., Bourdelle, K., Nguyen, B.-Y., Deleonibus, S.: High immunity to threshold voltage variability in undoped ultra-thin FDSOI MOSFETs and its physical understanding. In: Proc. IEDM, San Francisco, p. 245 (2008)Google Scholar
  21. 21.
    Cheng, B., Roy, S., Brown, A.R., Millar, C., Asenov, A.: Evaluation of intrinsic parameter fluctuations on 45, 32 and 22 nm technology node LP N-MOSFETs. In: Proc. ESSDERC, Edinburgh, p. 47 (2008)Google Scholar
  22. 22.
    Balestra, F., Jomaah, J.: Performance and new effects in advanced SOI devices and materials. Microelectron. Eng. 80, 230–240 (2005)CrossRefGoogle Scholar
  23. 23.
    Moselund, K.E., Dobrosz, P., Olsen, S., Pott, V., De Michielis, L., Tsamados, D., Bouvet, D., O’Neill, A., Ionescu, A.M.: Bended Gate-All-Around Nanowire MOSFET: a device with enhanced carrier mobility due to oxidation-induced tensile stress. In: Proc. IEDM, Washington, p. 191 (2007)Google Scholar
  24. 24.
    Dupre, C., Hubert, A., Becu, S., Jublot, M., Maffini-Alvaro, V., Vizioz, C., Aussenac, F., Arvet, C., Barnola, S., Hartmann, J.-M., Garnier, G., Allain, F., Colonna, J.-P., Rivoire, M., Baud, L., Pauliac, S., Loup, V., Chevolleau, T., Rivallin, P., Guillaumot, B., Ghibaudo, G., Faynot, O., Ernst, T., Deleonibus, S.: 15 nm-diameter 3D stacked nanowires with independent gates operation: FET. In: Proc. IEDM, San Francisco, p. 549 (2008)Google Scholar
  25. 25.
    Ernst, T., Duraffourg, L., Dupre, C., Bernard, E., Andreucci, P., Becu, S., Ollier, E., Hubert, A., Halte, C., Buckley, J., Thomas, O., Delapierre, G., Deleonibus, S., de Salvo, B., Robert, P., Faynot, O.: Novel Si-based nanowire devices: will they serve ultimate MOSFETs scaling or ultimate hybrid integration. In: Proc. IEDM, San Francisco, p. 745 (2008)Google Scholar
  26. 26.
    Baumgärtner, H.: Performance enhancement of vertical tunnel FET with SiGe in the p+ layer. Jpn. J. Appl. Phys. 43, 4073–4078 (2004)CrossRefGoogle Scholar
  27. 27.
    Wang, P.-F., Hilsenbeck, K., Nirschl, T., Oswald, M., Stepper, C., Weis, M.: Complementary tunneling transistor for low power application. Solid-State Electron. 48, 2281–2286 (2004)CrossRefGoogle Scholar
  28. 28.
    Boucart, K., Ionescu, A.M.: Double-gate tunnel FET with high-k gate dielectric. IEEE Trans. Electron. Devices (2007). doi: 10.1109/ESSDER.2006.307718
  29. 29.
    Boucart, K., Riess, W., Ionescu, A.M.: Asymmetrically strained all-silicon tunnel Fets featuring 1 V operation. In: Proc. ESSDERC’2009, Athens (2009)Google Scholar
  30. 30.
    Luisier, M., Klimeck, G.: Atomistic full-band design study of InAs band-to-band tunneling field-effect transitor. IEEE Electron Device Lett. 30, 602–604 (2009)CrossRefGoogle Scholar
  31. 31.
    Tanaka, T.: Scalability study on a capacitorless 1T-DRAM: from single-gate PD-SOI to double-gate FinDRAM. In: Proc. IEDM, San Francisco (2004). doi: 10.1109/IEDM.2004.1419332
  32. 32.
    Song, K.-W., Jeong, H., Lee, J.-W.: 55 nm capacitor-less 1T DRAM cell transistor with non-overlap structure. In: Proc. IEDM, San Francisco (2008). doi: 10.1109/IEDM.2008.4796818
  33. 33.
    Nowak, E., Boquet, M., Perniola, L., Ghibaudo, G., Molas, G., Jahan, C., Kies, R., Reimbold, G., De Salvo, B., Boulanger, F.: New physical model for ultra-scaled 3D nitride-trapping non volatile memories. In: Proc. IEDM, San Francisco (2008). doi: 10.1109/IEDM.2008.4796750
  34. 34.
    Endo, K., O’uchi, S.-I., Ishikawa, Y.: Enhancing SRAM cell performance by using independent double-gate FinFET. In: Proc. IEDM, San Francisco (2008). doi: 10.1109/IEDM.2008.4796833
  35. 35.
    Ryu, S.-W., Han, J.-W., Moon, D.-I., Choi, Y.-K.: One-transistor nonvolatile SRAM (ONSRAM) on silicon nanowire SONOS. In: Proc. IEDM, Washington, p. 27.5.1–27.5.4 (2009)Google Scholar
  36. 36.
    Hubert, A., Nowak, E., Tachi, K., Maffini-Alvaro, V., Vizioz, C., Arvet, C., Colonna, J.-P., Hartmann, J.-M., Loup, V., Baud, L., Pauliac, S., Delaye, V., Carabasse, C., Molas, G., Ghibaudo, G., De Salvo, B., Faynot, O., Ernst, T.: A stacked SONOS technology, up to 4 levels and 6 nm crystalline nanowires, with gate-all-around or independent gates (Φ-Flash), suitable for full 3D integration. In: Proc. IEDM, Washington, p. 637 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.IMEP-LAHC/Sinano InstituteCNRS-Grenoble INP MinatecGrenobleFrance

Personalised recommendations