Skip to main content

Confined and Guided Vapor–Liquid–Solid Catalytic Growth of Silicon Nanoribbons: From Nanowires to Structured Silicon-on-Insulator Layers

  • Chapter
  • First Online:
Semiconductor-On-Insulator Materials for Nanoelectronics Applications

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 2264 Accesses

Abstract

The stacking of crystal semiconductor thin films alternated with dielectric layers continuously arouses a sustained interest for its utility in three-dimensional (3D) integration of metal-oxide-semiconductor field-effect transistor (MOSFET). However, the growth of crystalline silicon without resorting to epitaxial growth from a crystal seed still constitutes an unresolved challenge. Although many different techniques ranging from solid-phase crystallization to thin-film bonding constitutes possible solutions with their respective advantages and weaknesses, little attention has been paid so far to the adaptation of a technique widely used for producing semiconductor nanowires, namely, the vapor–liquid–solid (VLS) catalytic growth. The basic idea developed in this chapter is to control VLS growth for synthesizing local silicon-on-insulator (SOI) layers at reduced thermal budget. Confined VLS growth is therefore proposed to produce single crystalline silicon (c-Si) film over an amorphous oxide layer, without crystalline seeding. It is demonstrated that VLS growth in the spatial confinement of a cavity produces nanometer-thick c-Si ribbons over a micron area scale with a well controlled localization. The nature of grown silicon layers is characterized by SEM (Scanning Electron Microscopy), EBSD (Electron Backscattered Diffraction) and STEM (Scanning Transmission Electron Microscopy) to analyze its crystallinity and to check the impact of the confining cavity walls on the purity of grown silicon. Beyond the in-depth structural analysis of VLS grown nanoribbons, simple back-gated MOSFET structures have been fabricated and electrically characterized to extract transport properties. The obtained hole mobility of 53 cms−1 V−1 constitutes an excellent compromise for a processing temperature less or equal to 500°C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sakuma, K., Andry, P.S., Tsang, C.K., Wright, S.L., Dang, B., Patel, C.S., Webb, B.C., Maria, J., Sprogis, E.J., Kang, S.K., Polastre, R.J., Horton, R.R., Knickerbocker, J.U.: 3D Chip-stacking technology with through-silicon vias and low-volume lead-free interconnections. IBM J. Res. Dev. 52, 611–622 (2008)

    Article  Google Scholar 

  2. Lim, H., Jung, S.M., Rah, Y., Ha, T., Park, H., Chang, C., Cho, W., Park, J., Son, B., Jeong, J., Cho, H., Choi, B., Kim, K.: 65 nm high performance SRAM technology with 25F2 0.16 μm2 S3 (stacked single-crystal Si) SRAM cell. Solid-State Device Research Conference, ESSDERC, Proc IEEE, pp. 549–552 (2005)

    Google Scholar 

  3. Mimura, A., Konishi, N., Ono, K., Ohwada, J.-I., Hosokawa, Y., Ono, Y.A., Suzuki, T., Miyata, K., Kawakami, H.: High-performance low temperature poly-Si n-channel TFT’s for LCD’s. IEEE Trans. Electron. Devices 36, 351–359 (1989)

    Article  Google Scholar 

  4. Subramanian, V., Dankoski, P., Degertekin, L., Khuri-Yakub, B.T., Saraswat, K.C.: Controlled two-step solid-phase crystallization for high performance polysilicon TFT’s. IEEE Trans. Electron. Devices 18, 378–381 (1997)

    Article  Google Scholar 

  5. Hatalis, M.K., Greve, D.W.: High-performance thin-film transistors in low-temperature crystallized LPCVD amorphous silicon films. IEEE Electron. Device Lett. 8, 361–364 (1987)

    Article  Google Scholar 

  6. Sheu, J.T., Huang, P.C., Sheu, T.S., Chen, C.C., Chen, L.A.: Characteristics of GAA twin poly-Si NW TFT. IEEE Electron. Device Lett. 30, 139–141 (2009)

    Article  Google Scholar 

  7. Hekmatshoar, B., Cherenack, K.H., Kattamis, A.Z., Long, K., Wagner, S., Stur, J.C.: Highly stable amorphous-silicon thin-film transistors on clear plastic. APL 93, 032103 (2008)

    Google Scholar 

  8. Yamauchi, N., Hajjar, J.J., Reif, R.: Drastically improved performance in poly-Si TFT with channel dimensions comparable to grain size. Technical Digest of International Electron Devices Meeting 1989, IEDM’89, pp. 353–356 (1989)

    Google Scholar 

  9. Pan, T.M., Chan, C.L., Wu, T.W.: High-performance poly-silicon TFTs using a high-k PrTiO3 gate dielectric. IEEE Electron. Device Lett. 30, 39–41 (2009)

    Article  Google Scholar 

  10. Oh, J.H., Kang, D.H., Park, W.H., Jang, J., Chang, Y.J., Choi, J.B., Kim, C.W.: A center-offset polycrystalline-Si TFT with n+ amorphous Si contacts. IEEE Electron. Device Lett. 30, 36–38 (2009)

    Article  Google Scholar 

  11. Zhang, D., Kwok, H.S.: A reduced mask-count technology for complementary polycrystalline silicon TFT with self-aligned metal electrodes. IEEE Electron. Device Lett. 30, 33–35 (2009)

    Article  Google Scholar 

  12. Chang, C.P., Wu, Y.C.S.: Improved electrical performance and uniformity of MILC poly-Si TFTs manufactured using drive-in nickel-induced lateral crystallization. IEEE Electron. Device Lett. 30, 1176–1178 (2009)

    Article  Google Scholar 

  13. Lee, S.-W., Joo, S.-K.: Low temperature poly-Si thin film transistor fabrication by metal induced lateral crystallization. IEEE Electron. Device Lett. 17, 160–162 (1996)

    Article  Google Scholar 

  14. Meng, Z., Wang, M., Wong, M.: High performance low temperature metal-induced unilaterally crystallized polycrystalline silicon thin film transistors for system-on-panel applications. IEEE Trans. Electron. Devices 47, 404–409 (2000)

    Article  Google Scholar 

  15. Kim, J.C., Choi, J.H., Kim, S.S., Jang, J.: Stable polycrystalline silicon TFT with MICC. IEEE Electron. Device Lett. 25, 182–184 (2004)

    Article  Google Scholar 

  16. Hu, C.M., Wu, Y.S., Lin, C.C.: Improving the electrical properties of NILC poly-Si films using a gettering substrate. IEEE Electron. Device Lett. 28, 1000–1003 (2007)

    Article  Google Scholar 

  17. Chang, C.P., Wu, Y.S.: Improved electrical characteristics and reliability of MILC poly-Si TFTs using fluorine-ion implantation. IEEE Electron. Device Lett. 28, 990–992 (2007)

    Article  Google Scholar 

  18. Song, N.K., Kim, Y.S., Kim, M.S., Han, S.H., Joo, S.K.: A fabrication method for reduction of silicide contamination in polycrystalline silicon thin-film transistors. Electrochem. Solid-State Lett. 10, H142–H144 (2007)

    Article  Google Scholar 

  19. Sameshima, T., Usui, S., Sekiya, M.: XeCl excimer laser annealing used in the fabrication of poly-Si TFT’s. IEEE Electron. Device Lett. 7, 276–278 (1986)

    Article  Google Scholar 

  20. Brunets, I., Holleman, J., Kovalgin, A.Y., Boogaard, A., Schmitz, J.: Low-temperature fabricated TFTs on polysilicon stripes. IEEE Trans. Electron. Devices 56, 1637–1644 (2009)

    Article  Google Scholar 

  21. Hara, A., Takeuchi, F., Takei, M., Suga, K., Yoshino, K., Chida, M., Sano, Y., Sasaki, N.: High-performance polycrystalline silicon thin film transistors on non alkali glass produced using continuous wave laser crystallization. Jpn. J. Appl. Phys. 41, L311–L313 (2002)

    Article  Google Scholar 

  22. Ishihara, R., Matsumura, M.: Excimer-laser-produced single-crystal silicon thin film transistors. Jpn. J. Appl. Phys. 36, 6167–6170 (1997)

    Article  Google Scholar 

  23. Hara, A., Takeuchi, F., Sasaki, N.: Mobility enhancement limit of excimer-laser-crystallized. J. Appl. Phys. 91, 708–714 (2002)

    Article  Google Scholar 

  24. Uchikoga, S., Ibaraki, N.: Low temperature poly Si TFT-LCD by excimer laser anneal. Thin Solid Films 383, 19–24 (2001)

    Article  Google Scholar 

  25. Im, J.S., Kim, H.J., Thompson, M.O.: Phase transformation mechanisms involved in excimer laser crystallization of amorphous silicon films. Appl. Phys. Lett. 63, 1969–1971 (1993)

    Article  Google Scholar 

  26. Im, J.S., Kim, H.J.: On the super lateral growth phenomenon observed in excimer laser-induced crystallization of thin Si films. Appl. Phys. Lett. 64, 2303–2305 (1994)

    Article  Google Scholar 

  27. Crowder, M.A., Carey, P.G., Smith, P.M., Sposili, R.S., Cho, H.S., Im, J.S.: Low-temperature single-crystal Si TFT’s fabricated on Si films processed via sequential lateral solidification. IEEE Electron. Device Lett. 19, 3006–3008 (1998)

    Article  Google Scholar 

  28. Crowder, M.A., Voutsas, A.T., Droes, S.R., Moriguchi, M., Mitani, Y.: Sequential lateral solidification processing for polycrystalline Si TFTs. IEEE Electron. Device Lett. 51, 558–560 (2004)

    Google Scholar 

  29. Yin, H., Xianyu, W., Cho, H., Zhang, X., Jung, J., Kim, D., Lim, H., Park, K., Kim, J., Kwon, J., Noguchi, T.: Advanced poly-Si TFT with fin-like channels by ELA. IEEE Electron. Device Lett. 27, 357–359 (2006)

    Article  Google Scholar 

  30. Yin, H., Xianyu, W., Tikhonovsky, A., Park, Y.S.: Scalable 3-D finlike poly-Si TFT and its nonvolatile memory application. IEEE Trans. Electron. Devices 55, 578–584 (2008)

    Article  Google Scholar 

  31. Van der Wilt, P.C., van Dijk, B.D., Bertens, G.J., Ishihara, R., Beenakker, C.I.M.: Formation of location-controlled crystalline islands using substrate-embedded-seeds in excimer-laser crystallization of silicon film. Appl. Phys. Lett. 79, 1819–1822 (2001)

    Article  Google Scholar 

  32. Baiano, A., Danesh, M., Saputra, N., Ishihara, R., Long, J., Metselaar, W., Beenakker, C.I.M., Karaki, N., Hiroshima, Y., Inoue, S.: Single-grain Si thin-film transistors SPICE model, analog and RF circuit applications. Solid-State Electron. 52, 1345–1352 (2008)

    Article  Google Scholar 

  33. Rana, V., Ishihara, R., Hiroshima, Y., Abe, D., Inoue, S., Shimoda, T., Metselaar, W., Beenakker, K.: Dependence of single-crystalline Si TFT characteristics on the channel position inside a localisation-controlled grain. IEEE Trans. Electron. Devices 52, 2622–2628 (2005)

    Article  Google Scholar 

  34. Ishihara, R., van der Wilt, P.C., van Dijk, B.D., Burtsev, A., Voogt, F.C., Bertens, G.J., Metselaar, J.W., Beenakker, C.I.M., Edward, T.V., Kelley, F.: Advanced excimer laser crystallization techniques of Si thin-film for location-control of large grain on glass. Flat Panel Disp. Technol. Disp. Metrol. II 4295, 14–23 (2001)

    Google Scholar 

  35. Baiano, A., Ishihara, R., van der Cingel, J., Beenakker, K.: Strained single-grain silicon n- and p-channel TFT by excimer laser. IEEE Electron. Device Lett. 31, 308–310 (2010)

    Article  Google Scholar 

  36. Sato, T., Yamamoto, K., Kambara, J., Kitahara, K., Hara, A.: Fabrication of large lateral polycrystalline silicon film by laser dehydrogenation and lateral crystallization of hydrogenated nanocrystalline silicon films. Jpn. J. Appl. Phys. 48, 121201–121206 (2009)

    Article  Google Scholar 

  37. Han, S.M., Lee, M.C., Shin, M.Y., Park, J.H., Han, M.K.: Poly-Si TFT fabricated at 150°C using ICP-CVD and excimer laser annealing. Proc. IEEE 93, 1297–1305 (2005)

    Article  Google Scholar 

  38. Ishihara, R., He, T.M., Rana, V., Hiroshima, Y., Inoue, S., Shimoda, T., Metselaar, J.W., Beenakker, C.I.M.: Electrical property of coincidence site lattice grain boundary in location-controlled Si island by excimer-laser crystallisation. Thin Solid Films 487, 97–101 (2005)

    Article  Google Scholar 

  39. Wagner, R.S., Ellis, W.C.: Vapor–liquid–solid mechanism of crystal growth and its application to silicon. Appl. Phys. Lett. 4, 89–90 (1964)

    Article  Google Scholar 

  40. Ke, Y., Weng, X., Redwing, J.M., Eichfeld, C.M., Swisher, T.R., Mohney, S.E., Habib, Y.M.: Fabrication and electrical properties of Si nanowires synthesized by Al catalyzed VLS growth. Nano Lett. 9, 4494–4499 (2009)

    Article  Google Scholar 

  41. Lu, W., Lieber, C.M.: Topical review: semiconductor nanowires. J. Phys. D Appl. Phys. 39, R387 (2006)

    Article  Google Scholar 

  42. Schmidt, V., Wittemann, J.V., Senz, S., Gösele, U.: Silicon nanowires: a review on aspects of their growth and their electrical properties. Adv. Mater. 21, 2681–2702 (2009)

    Article  Google Scholar 

  43. Quitoriano, N.J., Kamins, T.I.: Integrable nanowire transistors. Nano Lett. 8, 4410–4414 (2008)

    Article  Google Scholar 

  44. Fan, H.J., Werner, P., Zacharias, M.: Semiconductor nanowires: from self-organization to patterned growth. Small 2, 700–717 (2006)

    Article  Google Scholar 

  45. Schmidt, V., Senz, S., Gösele, U.: Diameter-dependent growth direction of epitaxial silicon nanowires. Nano Lett. 5, 931–935 (2005)

    Article  Google Scholar 

  46. Persson, A.I., Larsson, M.L., Stenström, S., Ohlsson, B.J., Samuelson, L., Wallenberg, L.R.: Solid-phase diffusion mechanism for GaAs nanowire growth. Nat. Mater. 3, 677–681 (2004)

    Article  Google Scholar 

  47. Lugstein, A., Steinmair, M., Hyun, Y.J., Hauer, G., Pongratz, P., Bertagnolli, E.: Pressure-induced orientation control of the growth of epitaxial silicon nanowires. Nano Lett. 8, 2310–2314 (2008)

    Article  Google Scholar 

  48. Shimizu, T., Zhang, Z., Shingubara, S., Senz, S., Gösele, U.: Vertical epitaxial wire-on-wire growth of Ge/Si on Si(100) substrate. Nano Lett. 9, 1523–1526 (2009)

    Article  Google Scholar 

  49. Lew, K.K., Redwing, J.M.: Growth characteristics of silicon nanowires synthesized by vapor–liquid–solid growth in nanoporous alumina templates. J. Cryst. Growth 254, 14–22 (2003)

    Google Scholar 

  50. Shan, Y., Ashok, S., Fonash, S.J.: Unipolar accumulation-type transistor configuration implemented using Si nanowires. Appl. Phys. Lett. 91, 093518–093520 (2007)

    Article  Google Scholar 

  51. Shan, Y., Kalkan, A.K., Peng, C.Y., Fonash, S.J.: From Si source gas directly to positioned, electrically contacted Si nanowires: the self-assembling “Grow-in-place” approach. Nano Lett. 4, 2085–2089 (2004)

    Article  Google Scholar 

  52. Shan, Y., Fonash, S.J.: Self-assembling silicon nanowires for device applications using the nanochannel-guided “Grow-in-place” approach. ACS Nano 2, 429–434 (2008)

    Article  Google Scholar 

  53. Lecestre, A., Dubois, E., Villaret, A., Coronel, P., Skotnicki, T., Delille, D., Maurice, C., Troadec, D.: Confined and guided catalytic growth of crystalline silicon films on a dielectric substrate. IOP Conf. Ser. Mater. Sci. Eng. 6, 012022 (2009)

    Article  Google Scholar 

  54. Hannon, J.B., Kodambaka, S., Ross, F.M., Tromp, R.M.: The influence of the surface migration of gold on the growth of silicon nanowires. Nature 440, 69–71 (2006)

    Article  Google Scholar 

  55. Allen, J.E., Hemesath, E.R., Perea, D.E., Lensch-Falk, J.L., Li, Z.Y., Yin, F., Gass, M.H., Wang, P., Bleloch, A.L., Palmer, R.E., Lauhon, L.J.: High-resolution detection of Au catalyst atoms in Si nanowires. Nat. Nanotechnol. 3, 168–173 (2008)

    Article  Google Scholar 

  56. den Hertog, M.I., Rouviere, J.L., Dhalluin, F., Desre, P.J., Gentile, P.P., Ferret, P., Oehler, F., Baron, T.: Control of gold surface diffusion on Si nanowires. Nano Lett. 8, 1544–1550 (2008)

    Article  Google Scholar 

  57. Lecestre, A., Dubois, E., Villaret, A., Skotnicki, T., Coronel, P., Patriarche, G., Maurice, C.: Confined VLS growth and structural characterization of silicon nanoribbons. Microelectron. Eng. 87, 1522–1526 (2010)

    Article  Google Scholar 

  58. Cristoloveanu, S., Munteanu, D., Liu, M.S.T.: A review of the pseudo-MOS transistor in SOI wafers: operation, parameter extraction, and applications. IEEE Trans. Electron. Devices 47, 1018–1027 (2000)

    Article  Google Scholar 

  59. Sato, S., Komiya, K., Bresson, N., Omura, Y., Cristoloveanu, S.: Possible influence of the Schottky contacts on the characteristics of ultrathin SOI pseudo-MOS transistors. IEEE Trans. Electron. Devices 52, 1807–1814 (2005)

    Article  Google Scholar 

  60. Larrieu, G., Dubois, E., Wallart, X., Baie, X., Katcki, J.: Formation of Pt-based silicide contacts: kinetics, stoichiometry and current drive capabilities. J. Appl. Phys. 94, 7801–7810 (2003)

    Article  Google Scholar 

  61. Dubois, E., Larrieu, G.: Measurement of low Schottky barrier heights applied to metallic source/drain MOSFETs. J. Appl. Phys. 96, 729–737 (2004)

    Article  Google Scholar 

  62. Breil, N., Dubois, E., Halimaoui, A., Pouydebasque, A., Larrieu, G., Łaszcz, A., Ratajcak, J., Skotnicki, T.: Integration of PtSi in p-type MOSFETs using a sacrificial low-temperature germanidation process. IEEE Electron. Device Lett. 29, 152–154 (2008)

    Article  Google Scholar 

  63. Breil, N., Halimaoui, A., Dubois, E., Larrieu, G., Łaszczc, A., Ratajczakc, J., Rolland, G., Pouydebasquee, A., Skotnicki, T.: Selective etching of Pt with respect to PtSi using a sacrificial low temperature germanidation process. Appl. Phys. Lett. 91, 232112 (2007)

    Article  Google Scholar 

  64. Reckinger, N., Tang, X., Bayot, V., Yarekha, D., Dubois, E., Godey, S., Wallart, X., Larrieu, G., Laszcz, A., Ratajczak, J., Jacques, P., Raskin, J.P.: Schottky barrier lowering with the formation of crystalline Er silicide on n-Si upon thermal annealing. Appl. Phys. Lett. 94, 191913 (2009)

    Article  Google Scholar 

  65. Yarekha, D., Larrieu, G., Breil, N., Dubois, E., Godey, S., Wallart, X., Soyer, C., Remiens, D., Reckinger, N., Tang, X., Laszcz, A., Ratajczak, J., Halimaoui, A.: UHV fabrication of the ytterbium silicide as potential low Schottky barrier S/D contact material for n-type MOSFET. ECS Trans. 19, 339–344 (2009)

    Article  Google Scholar 

  66. Ghibaudo, G.: New method for the extraction of MOSFET parameters. Electron. Lett. 24, 543–545 (1988)

    Article  Google Scholar 

  67. Chang, L., Ieong, M., Yang, M.: CMOS circuit performance enhancement by surface orientation optimization. IEEE Trans. Electron. Devices 51, 1621–1627 (2004)

    Article  Google Scholar 

  68. Lecestre, A., Dubois, E., Villaret, A., Coronel, P., Skotnicki, T., Delille, D., Maurice, C., Troadec, D.: Synthesis and characterization of crystalline silicon ribbons on insulator using catalytic vapor–liquid–solid growth inside a cavity. Proc of the sixth workshop of the Thermatic Network on Silicon–On–Insulator Tecnology, Devices and Circuits, EUROSOI’10 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Dubois .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lecestre, A. et al. (2011). Confined and Guided Vapor–Liquid–Solid Catalytic Growth of Silicon Nanoribbons: From Nanowires to Structured Silicon-on-Insulator Layers. In: Nazarov, A., Colinge, JP., Balestra, F., Raskin, JP., Gamiz, F., Lysenko, V. (eds) Semiconductor-On-Insulator Materials for Nanoelectronics Applications. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15868-1_4

Download citation

Publish with us

Policies and ethics