Skip to main content

Engineering Pseudosubstrates with Porous Silicon Technology

  • Chapter
  • First Online:
Book cover Semiconductor-On-Insulator Materials for Nanoelectronics Applications

Abstract

In this work, we use a controlled oxidation of a mesoporous silicon substrate as a tool for extending and adjusting the Si lattice parameter to other materials such as SixGe1-x. Our approach involves four steps. First, a seed film is epitaxially grown on a single-crystal Si(100) wafer by Molecular Beam Epitaxy(MBE). Second, porosification is performed according to a standard electrochemical etching procedure but using a “two wafers technique”. Third, the porous part of the sample is oxidized at mild temperatures (300–500°C) in a dry O2 atmosphere, inducing a substantial in-plane expansion of the seed film. Fourth, an overgrowth by MBE of an epilayer is done to test the thus-obtained pseudosubstrate. The challenging task in this last step is to deoxidize the seed film surface at ~900°C without losing the strain induced by oxidation of the porous part of the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kästner, G., Gösele, U.: Principles of strain relaxation in heteroepitaxial films growing on compliant substrates. J. Appl. Phys. 88, 4048–4056 (2000)

    Article  Google Scholar 

  2. Ayers, J.E.: Compliant substrates for heteroepitaxial semiconductor devices: theory, experiment, and current directions. J. Electron. Mater. 37, 1511–1523 (2008)

    Article  Google Scholar 

  3. Grinfeld, M.A.: Instability of the interface between a nonhydrostatically stressed elastic body and a melt. Dokl. Akad. Nauk SSSR 290, 1358–1368 (1986)

    Google Scholar 

  4. Asaro, R.J., Tiller, W.A.: Interface morphology development during stress corrosion cracking, Part I: via surface diffusion. Metall. Trans. 3, 1789–1796 (1972)

    Article  Google Scholar 

  5. Srolovitz, D.J.: On the stability of surfaces of stressed solids. Acta Metal. 37, 621–625 (1989)

    Article  Google Scholar 

  6. Danescu, A.: The Asaro-Tiller-Grinfeld instability revisited. Int. J. Solids Struct 38, 4671–4684 (2001)

    Article  MATH  Google Scholar 

  7. Moison, J.M., Houzay, F., Barthe, F., Leprince, L., André, E., Vatel, O.: Self organized growth of regular nanometerscale InAs dots on GaAs. Appl. Phys. Lett. 64, 196–198 (1994)

    Article  Google Scholar 

  8. Bimberg, D., Grundmann, M., Ledentsov, N.N.: Quantum Dot Heterostructures. Wiley, Chichester (1999)

    Google Scholar 

  9. Tersoff, J., LeGoues, F.: Competing relaxation mechanisms in strained layers. Phys. Rev. Lett. 72, 3570–3573 (1994)

    Article  Google Scholar 

  10. Müller, P., Kern, R.: The physical origin of the two-dimensional towards three-dimensional coherent epitaxial Stranski–Krastanov transition. Appl. Surf. Sci. 102, 6–11 (1996)

    Article  Google Scholar 

  11. Duport, C., Priester, C., Villain, J.: Equilibrium shape of a coherent epitaxial cluster. In: Zhang, Z., Lagally, M. (eds.) Morphological Organisation in Epitaxial Growth and Removal, Vol. 14, 73. World Scientific, Singapore (1998)

    Google Scholar 

  12. Matthews, J.W., Blakeslee, A.E.: Defects in epitaxial multilayers: I. Misfit dislocations. J. Cryst. Growth 27, 118–125 (1974)

    Google Scholar 

  13. Freund, L.B., Nix, W.D.: A critical thickness condition for a strained compliant substrate/epitaxial film system. Appl. Phys. Lett. 69, 173–175 (1996)

    Article  Google Scholar 

  14. Inoue, K., Harmand, J.C., Matsuno, T.: High-quality InxGa1-xAs/InAlAs modulation-doped heterostructures grown lattice-mismatched on GaAs substrates. J. Cryst. Growth 111, 313–317 (1991)

    Article  Google Scholar 

  15. Behet, M., Van der Zanden, K., Borghs, G., Behres, A.: Metamorphic InGaAs/InAlAs quantum well structures grown on GaAs substrates for high electron mobility transistor applications. Appl. Phys. Lett. 73, 2760–2762 (1998)

    Article  Google Scholar 

  16. Fitzgerald, E.A., Xie, Y.H., Green, M.L., Brasen, D., Kortan, A.R., Michel, J., Mii, Y.J., Weir, B.E.: Totally relaxed Ge x Si1−x layers with low threading dislocation densities grown on Si substrates. Appl. Phys. Lett. 59, 811–813 (1991)

    Article  Google Scholar 

  17. Lo, Y.H.: New approach to grow pseudomorphic structures over the critical thickness. Appl. Phys. Lett. 59, 2311–2313 (1991)

    Article  Google Scholar 

  18. Chua, C.L., Hsu, W.Y., Liu, C.H., Christenson, G., Lo, Y.H.: Overcoming the pseudomorphic critical thickness limit using compliant substrates. Appl. Phys. Lett. 64, 3640–3642 (1994)

    Article  Google Scholar 

  19. Jones, A.M., Jewell, J.L., Mabon, J.C., Reuter, E.E., Bishop, S.G., Roh, S.D., Coleman, J.J.: Long-wavelength InGaAs quantum wells grown without strain-induced warping on InGaAs compliant membranes above a GaAs substrate. Appl. Phys. Lett. 74, 1000–1003 (1999)

    Article  Google Scholar 

  20. Damlencourt, J.-F., Leclercq, J.-L., Gendry, M., Regreny, P., Hollinger, G.: High-quality fully relaxed In0.65Ga0.35As layers grown on InP using the paramorphic approach. Appl. Phys. Lett. 75, 3638–3690 (1999)

    Article  Google Scholar 

  21. Brown, A.S., Doolittle, W.A.: The status and promise of compliant substrate technology. Appl. Surf. Sci. 166, 392–398 (2000)

    Article  Google Scholar 

  22. Bourret, A.: Compliant substrates: a review on the concept, techniques and mechanisms. Appl. Surf. Sci. 164, 3–14 (2000)

    Article  Google Scholar 

  23. Vanhollebeke, K., Moerman, I., Van Daele, P., Demeester, P.: Compliant substrate technology: integration of mismatched materials for opto-electronic applications. Prog. Cryst. Growth Charact. Mater. 41, 1–55 (2000)

    Article  Google Scholar 

  24. Carter Coman, C., Brown, A., Bicknell-Tassius, R., Marie-Jokerst, N., Fournier, F., Dawson, D.: Strain-modulated epitaxy: modification of growth kinetics via patterned compliant substrates. J. Vac. Sci. Technol. B 14(3), 2170–2174 (1996)

    Article  Google Scholar 

  25. Ejeckam, F.E., Lo, Y.H., Subramania, S., Hou, H.Q., Hammons, B.E.: Lattice engineered compliant substrate for defect-free heteroepitaxial growth. Appl. Phys. Lett. 70, 1685–1687 (1997)

    Article  Google Scholar 

  26. Ejeckam, F.E., Seaford, M.L., Lo, Y.H., Hou, H.Q., Hammons, B.E.: Dislocation-free InSb grown on GaAs compliant universal substrates. Appl. Phys. Lett. 71, 776–778 (1997)

    Article  Google Scholar 

  27. Zhu, Z.H., Zhou, R., Ejeckam, F.E., Zhang, Z., Zhang, J., Greenberg, J., Lo, Y.H., Hou, H.Q., Hammons, B.E.: Growth of InGaAs multi-quantum wells at 1.3 μm wavelength on GaAs compliant substrates. Appl. Phys. Lett. 72, 2598–2600 (1998)

    Article  Google Scholar 

  28. Tan, T.Y., Gösele, U.: Twist wafer bonded “fixed-film” versus “compliant” substrates: correlated misfit dislocation generation and contaminant gettering. Appl. Phys. A 64, 631–633 (1997)

    Article  Google Scholar 

  29. Kästner, G., Tan, T.Y., Gösele, U.: A model of strain relaxation in hetero-epitaxial films on compliant substrates. Appl. Phys. A 66, 13–22 (1998)

    Article  Google Scholar 

  30. Obayashi, Y., Shintani, K.: Critical thickness of a heteroepitaxial film on a twist-bonded compliant substrate. J. Appl. Phys. 88, 105–115 (2000)

    Article  Google Scholar 

  31. Bourret, A.: How to control the self-organization of nanoparticles by bonded thin layers. Surf. Sci. 432, 37–53 (1999)

    Article  Google Scholar 

  32. Leroy, F., Eymery, J., Gentile, P., Fournel, F.: Ordering of Ge quantum dots with buried Si dislocation networks. Appl. Phys. Lett. 80, 3078–3080 (2002)

    Article  Google Scholar 

  33. Hobart, K.D., Kub, F.J., Fatemi, M., Twigg, M.E., Thompson, P.E., Kuan, T.S., Inoki, C.K.: Compliant substrates: a comparative study of the relaxation mechanisms of strained films bonded to high and low viscosity oxides. J. Electron. Mater. 29, 897–900 (2000)

    Article  Google Scholar 

  34. Yin, H., Huang, R., Hobart, K.D., Suo, Z., Kuan, T.S., Inoki, C.K., Shieh, S.R., Duffy, T.S., Kub, F.J., Sturm, J.C.: Strain relaxation of SiGe islands on compliant oxide. J. Appl. Phys. 91, 9716–9722 (2002)

    Article  Google Scholar 

  35. Liang, J., Huang, R., Yin, H., Sturm, J.C., Hobart, K.D., Suo, Z.: Relaxation of compressed elastic islands on a viscous layer. Acta Mater. 50, 2933–2944 (2002)

    Article  Google Scholar 

  36. Sridhar, N., Srolovitz, D.J., Suo, Z.: Kinetics of buckling of a compressed film on a viscous substrate. Appl. Phys. Lett. 78, 2482–2484 (2001)

    Article  Google Scholar 

  37. Marty, O., Nychyporuk, T., de la Torre, J., Lysenko, V., Bremond, G., Barbier, D.: Straining of monocrystalline silicon thin films with the use of porous silicon as stress generating nanomaterial. Appl. Phys. Lett. 88, 101909–101911 (2006)

    Article  Google Scholar 

  38. Kim, J., Xie, Y.H.: Fabrication of dislocation-free tensile strained Si thin films using controllably oxidized porous Si substrates. Appl. Phys. Lett. 89, 152117–152119 (2006)

    Article  Google Scholar 

  39. Kim, J., Li, B., Xie, Y.H.: A method for fabricating dislocation-free tensile-strained SiGe films via the oxidation of porous Si substrates. Appl. Phys. Lett. 91, 252108–252110 (2007)

    Article  Google Scholar 

  40. Lysenko, V., Ostapenko, D., Bluet, J.M., Regreny, Ph., Mermoux, M., Marty, O., Boucherif, A., Grenet, G., Skryshevsky, V., Guillot, G.: Straining of thin Si films by partially oxidized meso-porous Si substrates. Phys. Stat. Solidi 206, 1255–1258 (2009)

    Article  Google Scholar 

  41. Boucherif, A., Blanchard, N.P., Regreny, P., Marty, O., Guillot, G., Grenet, G., Lysenko, V.: Tensile strain engineering of Si thin films using porous Si substrates. Thin Solid Films 518, 2466–2469 (2010)

    Article  Google Scholar 

  42. Bellet, D.: Mechanical and Thermal properties. In: Canham, L.T. (ed.) Properties of Porous Silicon. EMIS, Data Reviewbook Series 18, INSPEC, 38. Institute of Electrical Engineers, London (1997)

    Google Scholar 

  43. Keating, P.N.: Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure. Phys. Rev. 145, 637–645 (1966)

    Article  Google Scholar 

  44. Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties. Pergamon, New York (1988)

    MATH  Google Scholar 

  45. Magoariec, H., Danescu, A.: Modeling macroscopic elasticity of porous silicon. Phys. Stat. Solidi 6, 1680–1684 (2009)

    Article  Google Scholar 

  46. Magoariec, H., Danescu, A.: In: Steinmann, P. (ed) Macroscopic Elasticity of Nanoporous Silicon: Bulk and Surface Effects, IUTAM Book Series 17 (2009). doi:10.1007/978-90-481-3447-2_13

  47. Dolino, G., Bellet, D.: In: Canham, L.T. (ed.) Properties of Porous Silicon. EMIS, Data Reviewbook Series 18, INSPEC, 118. Institute of Electrical Engineers, London (1997)

    Google Scholar 

  48. Chamard, V., Dolino, G.: X-ray diffraction investigation of n-type porous silicon. J. Appl. Phys. 89, 174–181 (2001)

    Article  Google Scholar 

  49. Erdtmann, M., Langdo, T.A.: The crystallographic properties of strained silicon measured by X-ray diffraction. J. Mater. Sci. 17, 137–147 (2006)

    Google Scholar 

  50. Hartmann, J.M., Gallas, B., Zhang, J., Harris, J.J.: Gas-source molecular beam epitaxy of SiGe virtual substrates: II Strain relaxation and surface morphology. Semicond. Sci. Technol. 15, 370–377 (2000)

    Article  Google Scholar 

  51. Bellet, D., Dolino, G.: X-ray diffraction studies of porous silicon. Thin Solid Films 276, 1–6 (1996)

    Article  Google Scholar 

  52. Barla, K., Bomchil, G., Hérino, R., Pfister, J.C., Baruchel, J.: Determination of lattice parameter and elastic properties of porous silicon by X-ray diffraction. J. Cryst. Growth 68, 727–732 (1984)

    Article  Google Scholar 

  53. Kim, K.H., Bai, G., Nicolet, M.A., Venezia, A.: Strain in porous Si with and without capping layers. J. Appl. Phys. 69, 2201–2205 (1991)

    Article  Google Scholar 

  54. Tsang, J., Mooney, P., Dacol, F., Chu, J.: Measurements of alloy composition and strain in thin Ge x Si1−x layers. J. Appl. Phys. 75, 8098–8109 (1994)

    Article  Google Scholar 

  55. Lee, M.L., Fitzgerald, E.A., Bulsara, M.T., Currie, M.T., Lochtefeld, A.: Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 97, 011101–011128 (2004)

    Article  Google Scholar 

  56. Soref, R., Kouvetakis, J., Tolle, J., Menendez, J., D’Costa, V.: Advances in SiGeSn technology. J. Mater. Res. 22, 3281–3291 (2007)

    Article  Google Scholar 

  57. El Kurdi, M., Fishman, G., Sauvage, S., Boucaud, P.: Band structure and optical gain of tensile-strained germanium based on a 30 band k·p formalism. J. Appl. Phys. 107, 013710–013717 (2010)

    Article  Google Scholar 

  58. Lim, P.H., Park, S., Ishikawa, Y., Wada, K.: Enhanced direct bandgap emission in germanium by micromechanical strain engineering. Opt. Express. 17, 16358–16365 (2009)

    Article  Google Scholar 

  59. El Kurdi, M., Bertin, H., Martincic, E., de Kersauson, M., Fishman, G., Sauvage, S., Bosseboeuf, A., Boucaud, P.: Control of direct band gap emission of bulk germanium by mechanical tensile strain. Appl. Phys. Lett. 96, 041909–041911 (2010)

    Article  Google Scholar 

  60. Seidi, S., Kroner, M., Högele, A., Karraib, K., Warburton, R.J., Badolato, A., Petroff, P.M.: Effect of uniaxial stress on excitons in a self-assembled quantum dot. Appl. Phys. Lett. 88, 203113–203115 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the French Research Agency (ANR) for funding this work via a “Projet Blanc” N° BLAN06-1_144612.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Grenet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blanchard, N.P. et al. (2011). Engineering Pseudosubstrates with Porous Silicon Technology. In: Nazarov, A., Colinge, JP., Balestra, F., Raskin, JP., Gamiz, F., Lysenko, V. (eds) Semiconductor-On-Insulator Materials for Nanoelectronics Applications. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15868-1_3

Download citation

Publish with us

Policies and ethics