Advertisement

Engineering Pseudosubstrates with Porous Silicon Technology

  • N. P. Blanchard
  • A. Boucherif
  • Ph. Regreny
  • A. Danescu
  • H. Magoariec
  • J. Penuelas
  • V. Lysenko
  • J.-M. Bluet
  • O. Marty
  • G. Guillot
  • G. GrenetEmail author
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

In this work, we use a controlled oxidation of a mesoporous silicon substrate as a tool for extending and adjusting the Si lattice parameter to other materials such as SixGe1-x. Our approach involves four steps. First, a seed film is epitaxially grown on a single-crystal Si(100) wafer by Molecular Beam Epitaxy(MBE). Second, porosification is performed according to a standard electrochemical etching procedure but using a “two wafers technique”. Third, the porous part of the sample is oxidized at mild temperatures (300–500°C) in a dry O2 atmosphere, inducing a substantial in-plane expansion of the seed film. Fourth, an overgrowth by MBE of an epilayer is done to test the thus-obtained pseudosubstrate. The challenging task in this last step is to deoxidize the seed film surface at ~900°C without losing the strain induced by oxidation of the porous part of the sample.

Keywords

Molecular Beam Epitaxy Porous Silicon Seed Layer Rapid Thermal Process Plastic Relaxation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to acknowledge the French Research Agency (ANR) for funding this work via a “Projet Blanc” N° BLAN06-1_144612.

References

  1. 1.
    Kästner, G., Gösele, U.: Principles of strain relaxation in heteroepitaxial films growing on compliant substrates. J. Appl. Phys. 88, 4048–4056 (2000)CrossRefGoogle Scholar
  2. 2.
    Ayers, J.E.: Compliant substrates for heteroepitaxial semiconductor devices: theory, experiment, and current directions. J. Electron. Mater. 37, 1511–1523 (2008)CrossRefGoogle Scholar
  3. 3.
    Grinfeld, M.A.: Instability of the interface between a nonhydrostatically stressed elastic body and a melt. Dokl. Akad. Nauk SSSR 290, 1358–1368 (1986)Google Scholar
  4. 4.
    Asaro, R.J., Tiller, W.A.: Interface morphology development during stress corrosion cracking, Part I: via surface diffusion. Metall. Trans. 3, 1789–1796 (1972)CrossRefGoogle Scholar
  5. 5.
    Srolovitz, D.J.: On the stability of surfaces of stressed solids. Acta Metal. 37, 621–625 (1989)CrossRefGoogle Scholar
  6. 6.
    Danescu, A.: The Asaro-Tiller-Grinfeld instability revisited. Int. J. Solids Struct 38, 4671–4684 (2001)zbMATHCrossRefGoogle Scholar
  7. 7.
    Moison, J.M., Houzay, F., Barthe, F., Leprince, L., André, E., Vatel, O.: Self organized growth of regular nanometerscale InAs dots on GaAs. Appl. Phys. Lett. 64, 196–198 (1994)CrossRefGoogle Scholar
  8. 8.
    Bimberg, D., Grundmann, M., Ledentsov, N.N.: Quantum Dot Heterostructures. Wiley, Chichester (1999)Google Scholar
  9. 9.
    Tersoff, J., LeGoues, F.: Competing relaxation mechanisms in strained layers. Phys. Rev. Lett. 72, 3570–3573 (1994)CrossRefGoogle Scholar
  10. 10.
    Müller, P., Kern, R.: The physical origin of the two-dimensional towards three-dimensional coherent epitaxial Stranski–Krastanov transition. Appl. Surf. Sci. 102, 6–11 (1996)CrossRefGoogle Scholar
  11. 11.
    Duport, C., Priester, C., Villain, J.: Equilibrium shape of a coherent epitaxial cluster. In: Zhang, Z., Lagally, M. (eds.) Morphological Organisation in Epitaxial Growth and Removal, Vol. 14, 73. World Scientific, Singapore (1998)Google Scholar
  12. 12.
    Matthews, J.W., Blakeslee, A.E.: Defects in epitaxial multilayers: I. Misfit dislocations. J. Cryst. Growth 27, 118–125 (1974)Google Scholar
  13. 13.
    Freund, L.B., Nix, W.D.: A critical thickness condition for a strained compliant substrate/epitaxial film system. Appl. Phys. Lett. 69, 173–175 (1996)CrossRefGoogle Scholar
  14. 14.
    Inoue, K., Harmand, J.C., Matsuno, T.: High-quality InxGa1-xAs/InAlAs modulation-doped heterostructures grown lattice-mismatched on GaAs substrates. J. Cryst. Growth 111, 313–317 (1991)CrossRefGoogle Scholar
  15. 15.
    Behet, M., Van der Zanden, K., Borghs, G., Behres, A.: Metamorphic InGaAs/InAlAs quantum well structures grown on GaAs substrates for high electron mobility transistor applications. Appl. Phys. Lett. 73, 2760–2762 (1998)CrossRefGoogle Scholar
  16. 16.
    Fitzgerald, E.A., Xie, Y.H., Green, M.L., Brasen, D., Kortan, A.R., Michel, J., Mii, Y.J., Weir, B.E.: Totally relaxed GexSi1−x layers with low threading dislocation densities grown on Si substrates. Appl. Phys. Lett. 59, 811–813 (1991)CrossRefGoogle Scholar
  17. 17.
    Lo, Y.H.: New approach to grow pseudomorphic structures over the critical thickness. Appl. Phys. Lett. 59, 2311–2313 (1991)CrossRefGoogle Scholar
  18. 18.
    Chua, C.L., Hsu, W.Y., Liu, C.H., Christenson, G., Lo, Y.H.: Overcoming the pseudomorphic critical thickness limit using compliant substrates. Appl. Phys. Lett. 64, 3640–3642 (1994)CrossRefGoogle Scholar
  19. 19.
    Jones, A.M., Jewell, J.L., Mabon, J.C., Reuter, E.E., Bishop, S.G., Roh, S.D., Coleman, J.J.: Long-wavelength InGaAs quantum wells grown without strain-induced warping on InGaAs compliant membranes above a GaAs substrate. Appl. Phys. Lett. 74, 1000–1003 (1999)CrossRefGoogle Scholar
  20. 20.
    Damlencourt, J.-F., Leclercq, J.-L., Gendry, M., Regreny, P., Hollinger, G.: High-quality fully relaxed In0.65Ga0.35As layers grown on InP using the paramorphic approach. Appl. Phys. Lett. 75, 3638–3690 (1999)CrossRefGoogle Scholar
  21. 21.
    Brown, A.S., Doolittle, W.A.: The status and promise of compliant substrate technology. Appl. Surf. Sci. 166, 392–398 (2000)CrossRefGoogle Scholar
  22. 22.
    Bourret, A.: Compliant substrates: a review on the concept, techniques and mechanisms. Appl. Surf. Sci. 164, 3–14 (2000)CrossRefGoogle Scholar
  23. 23.
    Vanhollebeke, K., Moerman, I., Van Daele, P., Demeester, P.: Compliant substrate technology: integration of mismatched materials for opto-electronic applications. Prog. Cryst. Growth Charact. Mater. 41, 1–55 (2000)CrossRefGoogle Scholar
  24. 24.
    Carter Coman, C., Brown, A., Bicknell-Tassius, R., Marie-Jokerst, N., Fournier, F., Dawson, D.: Strain-modulated epitaxy: modification of growth kinetics via patterned compliant substrates. J. Vac. Sci. Technol. B 14(3), 2170–2174 (1996)CrossRefGoogle Scholar
  25. 25.
    Ejeckam, F.E., Lo, Y.H., Subramania, S., Hou, H.Q., Hammons, B.E.: Lattice engineered compliant substrate for defect-free heteroepitaxial growth. Appl. Phys. Lett. 70, 1685–1687 (1997)CrossRefGoogle Scholar
  26. 26.
    Ejeckam, F.E., Seaford, M.L., Lo, Y.H., Hou, H.Q., Hammons, B.E.: Dislocation-free InSb grown on GaAs compliant universal substrates. Appl. Phys. Lett. 71, 776–778 (1997)CrossRefGoogle Scholar
  27. 27.
    Zhu, Z.H., Zhou, R., Ejeckam, F.E., Zhang, Z., Zhang, J., Greenberg, J., Lo, Y.H., Hou, H.Q., Hammons, B.E.: Growth of InGaAs multi-quantum wells at 1.3 μm wavelength on GaAs compliant substrates. Appl. Phys. Lett. 72, 2598–2600 (1998)CrossRefGoogle Scholar
  28. 28.
    Tan, T.Y., Gösele, U.: Twist wafer bonded “fixed-film” versus “compliant” substrates: correlated misfit dislocation generation and contaminant gettering. Appl. Phys. A 64, 631–633 (1997)CrossRefGoogle Scholar
  29. 29.
    Kästner, G., Tan, T.Y., Gösele, U.: A model of strain relaxation in hetero-epitaxial films on compliant substrates. Appl. Phys. A 66, 13–22 (1998)CrossRefGoogle Scholar
  30. 30.
    Obayashi, Y., Shintani, K.: Critical thickness of a heteroepitaxial film on a twist-bonded compliant substrate. J. Appl. Phys. 88, 105–115 (2000)CrossRefGoogle Scholar
  31. 31.
    Bourret, A.: How to control the self-organization of nanoparticles by bonded thin layers. Surf. Sci. 432, 37–53 (1999)CrossRefGoogle Scholar
  32. 32.
    Leroy, F., Eymery, J., Gentile, P., Fournel, F.: Ordering of Ge quantum dots with buried Si dislocation networks. Appl. Phys. Lett. 80, 3078–3080 (2002)CrossRefGoogle Scholar
  33. 33.
    Hobart, K.D., Kub, F.J., Fatemi, M., Twigg, M.E., Thompson, P.E., Kuan, T.S., Inoki, C.K.: Compliant substrates: a comparative study of the relaxation mechanisms of strained films bonded to high and low viscosity oxides. J. Electron. Mater. 29, 897–900 (2000)CrossRefGoogle Scholar
  34. 34.
    Yin, H., Huang, R., Hobart, K.D., Suo, Z., Kuan, T.S., Inoki, C.K., Shieh, S.R., Duffy, T.S., Kub, F.J., Sturm, J.C.: Strain relaxation of SiGe islands on compliant oxide. J. Appl. Phys. 91, 9716–9722 (2002)CrossRefGoogle Scholar
  35. 35.
    Liang, J., Huang, R., Yin, H., Sturm, J.C., Hobart, K.D., Suo, Z.: Relaxation of compressed elastic islands on a viscous layer. Acta Mater. 50, 2933–2944 (2002)CrossRefGoogle Scholar
  36. 36.
    Sridhar, N., Srolovitz, D.J., Suo, Z.: Kinetics of buckling of a compressed film on a viscous substrate. Appl. Phys. Lett. 78, 2482–2484 (2001)CrossRefGoogle Scholar
  37. 37.
    Marty, O., Nychyporuk, T., de la Torre, J., Lysenko, V., Bremond, G., Barbier, D.: Straining of monocrystalline silicon thin films with the use of porous silicon as stress generating nanomaterial. Appl. Phys. Lett. 88, 101909–101911 (2006)CrossRefGoogle Scholar
  38. 38.
    Kim, J., Xie, Y.H.: Fabrication of dislocation-free tensile strained Si thin films using controllably oxidized porous Si substrates. Appl. Phys. Lett. 89, 152117–152119 (2006)CrossRefGoogle Scholar
  39. 39.
    Kim, J., Li, B., Xie, Y.H.: A method for fabricating dislocation-free tensile-strained SiGe films via the oxidation of porous Si substrates. Appl. Phys. Lett. 91, 252108–252110 (2007)CrossRefGoogle Scholar
  40. 40.
    Lysenko, V., Ostapenko, D., Bluet, J.M., Regreny, Ph., Mermoux, M., Marty, O., Boucherif, A., Grenet, G., Skryshevsky, V., Guillot, G.: Straining of thin Si films by partially oxidized meso-porous Si substrates. Phys. Stat. Solidi 206, 1255–1258 (2009)CrossRefGoogle Scholar
  41. 41.
    Boucherif, A., Blanchard, N.P., Regreny, P., Marty, O., Guillot, G., Grenet, G., Lysenko, V.: Tensile strain engineering of Si thin films using porous Si substrates. Thin Solid Films 518, 2466–2469 (2010)CrossRefGoogle Scholar
  42. 42.
    Bellet, D.: Mechanical and Thermal properties. In: Canham, L.T. (ed.) Properties of Porous Silicon. EMIS, Data Reviewbook Series 18, INSPEC, 38. Institute of Electrical Engineers, London (1997)Google Scholar
  43. 43.
    Keating, P.N.: Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure. Phys. Rev. 145, 637–645 (1966)CrossRefGoogle Scholar
  44. 44.
    Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties. Pergamon, New York (1988)zbMATHGoogle Scholar
  45. 45.
    Magoariec, H., Danescu, A.: Modeling macroscopic elasticity of porous silicon. Phys. Stat. Solidi 6, 1680–1684 (2009)CrossRefGoogle Scholar
  46. 46.
    Magoariec, H., Danescu, A.: In: Steinmann, P. (ed) Macroscopic Elasticity of Nanoporous Silicon: Bulk and Surface Effects, IUTAM Book Series 17 (2009). doi: 10.1007/978-90-481-3447-2_13
  47. 47.
    Dolino, G., Bellet, D.: In: Canham, L.T. (ed.) Properties of Porous Silicon. EMIS, Data Reviewbook Series 18, INSPEC, 118. Institute of Electrical Engineers, London (1997)Google Scholar
  48. 48.
    Chamard, V., Dolino, G.: X-ray diffraction investigation of n-type porous silicon. J. Appl. Phys. 89, 174–181 (2001)CrossRefGoogle Scholar
  49. 49.
    Erdtmann, M., Langdo, T.A.: The crystallographic properties of strained silicon measured by X-ray diffraction. J. Mater. Sci. 17, 137–147 (2006)Google Scholar
  50. 50.
    Hartmann, J.M., Gallas, B., Zhang, J., Harris, J.J.: Gas-source molecular beam epitaxy of SiGe virtual substrates: II Strain relaxation and surface morphology. Semicond. Sci. Technol. 15, 370–377 (2000)CrossRefGoogle Scholar
  51. 51.
    Bellet, D., Dolino, G.: X-ray diffraction studies of porous silicon. Thin Solid Films 276, 1–6 (1996)CrossRefGoogle Scholar
  52. 52.
    Barla, K., Bomchil, G., Hérino, R., Pfister, J.C., Baruchel, J.: Determination of lattice parameter and elastic properties of porous silicon by X-ray diffraction. J. Cryst. Growth 68, 727–732 (1984)CrossRefGoogle Scholar
  53. 53.
    Kim, K.H., Bai, G., Nicolet, M.A., Venezia, A.: Strain in porous Si with and without capping layers. J. Appl. Phys. 69, 2201–2205 (1991)CrossRefGoogle Scholar
  54. 54.
    Tsang, J., Mooney, P., Dacol, F., Chu, J.: Measurements of alloy composition and strain in thin GexSi1−x layers. J. Appl. Phys. 75, 8098–8109 (1994)CrossRefGoogle Scholar
  55. 55.
    Lee, M.L., Fitzgerald, E.A., Bulsara, M.T., Currie, M.T., Lochtefeld, A.: Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 97, 011101–011128 (2004)CrossRefGoogle Scholar
  56. 56.
    Soref, R., Kouvetakis, J., Tolle, J., Menendez, J., D’Costa, V.: Advances in SiGeSn technology. J. Mater. Res. 22, 3281–3291 (2007)CrossRefGoogle Scholar
  57. 57.
    El Kurdi, M., Fishman, G., Sauvage, S., Boucaud, P.: Band structure and optical gain of tensile-strained germanium based on a 30 band k·p formalism. J. Appl. Phys. 107, 013710–013717 (2010)CrossRefGoogle Scholar
  58. 58.
    Lim, P.H., Park, S., Ishikawa, Y., Wada, K.: Enhanced direct bandgap emission in germanium by micromechanical strain engineering. Opt. Express. 17, 16358–16365 (2009)CrossRefGoogle Scholar
  59. 59.
    El Kurdi, M., Bertin, H., Martincic, E., de Kersauson, M., Fishman, G., Sauvage, S., Bosseboeuf, A., Boucaud, P.: Control of direct band gap emission of bulk germanium by mechanical tensile strain. Appl. Phys. Lett. 96, 041909–041911 (2010)CrossRefGoogle Scholar
  60. 60.
    Seidi, S., Kroner, M., Högele, A., Karraib, K., Warburton, R.J., Badolato, A., Petroff, P.M.: Effect of uniaxial stress on excitons in a self-assembled quantum dot. Appl. Phys. Lett. 88, 203113–203115 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • N. P. Blanchard
    • 1
  • A. Boucherif
    • 1
  • Ph. Regreny
    • 1
  • A. Danescu
    • 1
  • H. Magoariec
    • 2
  • J. Penuelas
    • 1
  • V. Lysenko
    • 1
  • J.-M. Bluet
    • 1
  • O. Marty
    • 1
  • G. Guillot
    • 1
  • G. Grenet
    • 1
    Email author
  1. 1.Institut des Nanotechnologies de Lyon (INL), CNRS UMR-5270Université de LyonLyonFrance
  2. 2.Laboratoire de Tribologie et Dynamique des Systèmes (LTDS), CNRS UMR-5513Université de LyonLyonFrance

Personalised recommendations