Advertisement

A Selection of SOI Puzzles and Tentative Answers

  • S. CristoloveanuEmail author
  • M. Bawedin
  • K.-I. Na
  • W. Van Den Daele
  • K.-H. Park
  • L. Pham-Nguyen
  • J. Wan
  • K. Tachi
  • S.-J. Chang
  • I. Ionica
  • A. Diab
  • Y.-H. Bae
  • J. A. Chroboczek
  • A. Ohata
  • C. Fenouillet-Beranger
  • T. Ernst
  • E. Augendre
  • C. Le Royer
  • A. Zaslavsky
  • H. Iwai
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

Recent research on advanced SOI materials and devices has delivered rich and informative data, enabling further progress in science and technology. However, some of the results still look intriguing, likely to open new space for investigation and developments. In this chapter, we have selected a variety of multi-angle problems which may stimulate dedicated SOI research. When available, experimental arguments and scenarios are proposed.

Keywords

Threshold Voltage Gate Length Interface Trap Subthreshold Slope Memory Window 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank our supporting organizations (Eurosoi+, Nanosil, WCU, etc.) and our SOI colleagues.

References

  1. 1.
    Cristoloveanu, S., Li, S.S.: Electrical Characterization of Silicon-On-Insulator Materials and Devices. Kluwer Academic, Boston (1995)Google Scholar
  2. 2.
    Ghibaudo, G.: Low-frequency noise and fluctuations in advanced CMOS devices. In: Proceedings of SPIE, vol. 5113, pp. 16–28. Presented at Noise in Devices and Circuits, Santa Fe, USA (2003)Google Scholar
  3. 3.
    Hamaide, G., Allibert, F., Hovel, H., Cristoloveanu, S.: Impact of free-surface passivation on silicon on insulator buried interface properties by pseudo transistor characterization. J. Appl. Phys. 101, 114513 1–6 (2007)CrossRefGoogle Scholar
  4. 4.
    Rodriguez, N., Cristoloveanu, S., Gamiz, F.: Revisited pseudo-MOSFET models for the characterization of ultrathin SOI wafers. IEEE Trans. Electron Devices 56, 1507–1515 (2009)CrossRefGoogle Scholar
  5. 5.
    Shang, H., Frank, M., Gusev, E., et al.: Germanium channel MOSFETs: opportunities and challenges. IBM J. Res. Dev. 50(4–5), 377–386 (2006)CrossRefGoogle Scholar
  6. 6.
    Mitard, J., De Jaeger, B., Leys, F.E., et al.: Record ION/IOFF performance for 65 nm Ge pMOSFET and novel Si passivation scheme for improved EOT scalability. Tech. Dig. IEDM art. no. 4796837 (2008)Google Scholar
  7. 7.
    Akatsu, T., Deguet, C., Sanchez, L., et al.: Germanium-on-insulator (GeOI) substrates: a novel engineered substrate for future high performance devices. Mater. Sci. Semiconductor Process. 9(4–5 SPEC. ISS), 444–448 (2006)CrossRefGoogle Scholar
  8. 8.
    Romanjek, K., Hutin, L., Le Royer, C., et al.: High performance 70 nm gate length germanium-on-insulator pMOSFET with high-k/metal gate. Solid State Electron. 53(7), 723–729 (2009)CrossRefGoogle Scholar
  9. 9.
    Nguyen, Q.T., Damlencourt, J.F., Vincent, B., Clavelier, L., Morand, Y., Gentil, P., Cristoloveanu, S.: High quality germanium-on-insulator wafers with excellent hole mobility. Solid State Electron. 51, 1172–1179 (2007)CrossRefGoogle Scholar
  10. 10.
    Weber, J.R., Janotti, A., Rinke, P., et al.: Dangling bond defects and hydrogen passivation in germanium. Appl. Phys. Lett. 91(14), 142101 (2007)CrossRefGoogle Scholar
  11. 11.
    Van Den Daele, W., Augendre, E., Le Royer, C., Damlencourt, J.F., Grandchamp, B., Cristoloveanu, S.: Low temperature characterization and modeling of advanced GeOI pMOSFETs: mobility mechanisms and origin of the parasitic conduction. Solid State Electron. 54, 205–212 (2009)CrossRefGoogle Scholar
  12. 12.
    Dimoulas, A., Tspias, T.: Germanium surfaces and interfaces. Microelectronic Eng. 86(7–9) 1577–1581 (2009)Google Scholar
  13. 13.
    Eneman, G., Verheyen, P., Keersgieter, A.D., Jurczak, M., De Meyer, F.: Scalability of stress induced by contact-etch-stop layers: a simulation study. IEEE Trans. Electron Devices 54, 1446–1453 (2007)CrossRefGoogle Scholar
  14. 14.
    Payet, F., Boeuf, F., Ortolland, C., Skotnicki, T.: Nonuniform mobility enhancement techniques and their impact on device performance. IEEE Trans. Electron Devices 55, 1050–1057 (2008)CrossRefGoogle Scholar
  15. 15.
    Cros, A., Romanjek, K., Fleury, D., Harrison, S., Cerruti, R., Coronel, P., Dumont, B., et al.: Unexpected mobility degradation for very short devices: a new challenge for CMOS scaling. Proc. IEDM art. no. 4154291 439–442 (2006)Google Scholar
  16. 16.
    Pham-Nguyen, L., Fenouillet-Beranger, C., Vandooren, A., Skotnicki, T., Ghibaudo, G., Cristoloveanu, S.: In situ comparison of Si/High-K and Si/SiO2 channels properties in SOI MOSFETs. IEEE Electron Device Lett. 30, 1075–1077 (2009)CrossRefGoogle Scholar
  17. 17.
    Pham-Nguyen, L., Fenouillet-Beranger, C., Ghibaudo, G., Skotnicki, T., Cristoloveanu, S.: Mobility enhancement by CESL strain in short-channel ultrathin SOI MOSFETs. Solid State Electron. 54, 123–130 (2010)CrossRefGoogle Scholar
  18. 18.
    Bawedin, M., Cristoloveanu, S., Flandre, D.: Innovating SOI memory devices based on floating-body effects. Solid State Electron. 51, 1252–1262 (2007)CrossRefGoogle Scholar
  19. 19.
    Bawedin, M., Cristoloveanu, S., Flandre, D.: A capacitor-less 1T-DRAM on SOI based on double gate operation. IEEE Electron Device Lett. 29, 795–798 (2008)CrossRefGoogle Scholar
  20. 20.
    Chang, S.J., Na, K.I., Bawedin, M., Bae, Y.H., Park, K.H., Lee, J.H., Xiong, W., Cristoloveanu, S.: Investigation of hysteresis memory effects in SOI FinFETs with ONO buried insulator. 2010 IEEE International SOI Conference, San Diego, CA, USA, 2010Google Scholar
  21. 21.
    Colinge, J.P.: Multiple-gate SOI MOSFETs. Solid State Electron. 48, 897–905 (2004)CrossRefGoogle Scholar
  22. 22.
    Tachi, K., Casse, M., Jang, D., Dupré, C., Hubert, A., Vulliet, N., Maffini-Alvaro, V., Vizioz, C., Carabasse, C., Delaye, V., Hartmann, J.M., Ghibaudo, G., Iwai, H., Cristoloveanu, S., Faynot, O., Ernst, T.: Relationship between mobility and high-k interface properties in advanced Si and SiGe nanowires. IEDM Tech. Dig. art. no. 5424360 12.7.1–12.7.4 (2009)Google Scholar
  23. 23.
    Casse, M., Tachi, K., Thiele, S., Ernst, T.: Spectroscopic charge pumping in Si nanowire transistors with a high-kappa/metal gate. Appl. Phys. Lett. 96, 3–123506 (2010)Google Scholar
  24. 24.
    Reddick, W.M., Amaratunga, G.A.J.: Silicon surface tunnel transistor. Appl. Phys. Lett. 67, 494–496 (1995)CrossRefGoogle Scholar
  25. 25.
    Choi, Y., Park, B.G., Lee, J.D., Liu, T.K.: Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett. 28, 743–745 (2007)CrossRefGoogle Scholar
  26. 26.
    Mayer, F., Le Royer, C., Damlencourt, J.F., Romanjek, K., Andrieu, F., Tabone, C., Previtali, B., Deleonibus, S.: Impact of SOI, Si1-xGexOI and GeOI substrates on CMOS compatible tunnel FET performance. IEDM Tech. Dig. art. no. 4796641 163–166 (2008)Google Scholar
  27. 27.
    Leonelli, D., Vandooren, A., Rooyackers, R., Verhulst, A.S., De Gendt, S., Heyns, M.M., Groeseneken, G.: Performance enhancement in multi gate tunneling field effect transistor by scaling thefin-width japanese. J. Appl. Phy. 49(4 Part 2), art. no. 04DC10 (2010)Google Scholar
  28. 28.
    Krishnamohan, T., Kim, D., Raghunathan, S., Saraswat, K.: Double-gate strained-Ge heterostructure tunneling FET (TFET) with record high drive currents and ≪ 60 mV/dec subthreshold slope. IEDM Tech. Dig. art. no. 4796839 947–949 (2008)Google Scholar
  29. 29.
    Kazazis, D., Jannaty, P., Zaslavsky, A., Le Royer, C., Tabone, C., Clavelier, L., Cristoloveanu, S.: Tunneling field-effect transistor with epitaxial junction in thin germanium-on-insulator. Appl. Phys. Lett. 94(26), art. no. 263508 (2009)Google Scholar
  30. 30.
    Kane, E.O.: Theory of tunneling. J. Appl. Phys. 32(1), 83–91 (1961)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • S. Cristoloveanu
    • 1
    Email author
  • M. Bawedin
    • 1
  • K.-I. Na
    • 1
  • W. Van Den Daele
    • 1
  • K.-H. Park
    • 1
  • L. Pham-Nguyen
    • 1
  • J. Wan
    • 1
  • K. Tachi
    • 1
    • 2
  • S.-J. Chang
    • 1
  • I. Ionica
    • 1
  • A. Diab
    • 1
  • Y.-H. Bae
    • 1
    • 3
  • J. A. Chroboczek
    • 1
  • A. Ohata
    • 1
  • C. Fenouillet-Beranger
    • 2
    • 4
  • T. Ernst
    • 2
  • E. Augendre
    • 2
  • C. Le Royer
    • 2
  • A. Zaslavsky
    • 1
    • 5
  • H. Iwai
    • 6
  1. 1.IMEP-LAHC (UMR 5130)Grenoble INP MinatecGrenoble Cedex 1France
  2. 2.CEA-LETIMinatecGrenoble Cedex 9France
  3. 3.Uiduk UniversityGangdong, GyeogjuKorea
  4. 4.STMicroelectronicsCrolles CedexFrance
  5. 5.Division of EngineeringBrown UniversityProvidenceUSA
  6. 6.Frontier Research CenterTokyo Institute of TechnologyYokohamaJapan

Personalised recommendations