Skip to main content

Sensing and MEMS Devices in Thin-Film SOI MOS Technology

  • Chapter
  • First Online:
Book cover Semiconductor-On-Insulator Materials for Nanoelectronics Applications

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Silicon-on-Insulator (SOI) technology is emerging as a major contender for heterogeneous microsystems applications. In this work, we demonstrate the advantages of SOI technology for building thin-film field-effect biosensors and optical detectors, physical and chemical sensors on thin dielectric membrane as well as three-dimensional (3D) microelectromechanical (MEMS) sensors and actuators. The flatness and robustness of the thin membrane as well as the self-assembling of 3D microstructures rely on the chemical release of the microstructures and on the control of the residual stresses building up in multilayered structures undergoing a complete thermal process. The deflection of multilayered structures made of both elastic and plastic thin films results from the thermal expansion coefficient mismatches between the layers and from the plastic flow of a metallic layer. The proposed CMOS-compatible fabrication processes were successfully applied to suspended sensors on thin dielectric membranes such as gas-composition, gas-flow and pressure sensors and to 3D self-assembled microstructures such as thermal and flow sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernstein, K., Rohrer, N.: SOI circuit design concepts. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  2. Flandre, D., Raskin, J.-P., Vanhoenacker, D.: SOI CMOS transistors for RF and microwave applications. In: Dean, M.J., Fjeldly, T.A. (eds.) CMOS RF Modeling, Characterization and Applications. World Scientific Publishing Co., London (2002). ISBN 981-02-4905-5

    Google Scholar 

  3. Flandre, D.: Silicon-on-Insulator technology for high temperature metal oxide semiconductor devices and circuits. In: Kirschman, R. (ed.) High temperature electronics. IEEE Press, Piscataway (1998)

    Google Scholar 

  4. Leray, J.L., Dupont-Nivet, E., Musseau, O., Coic, Y.M., Umbert, A., Lalande, P., Pere, J.F., Auberton-Herve, A.J., Bruel, M., Jaussaud, C., Margail, J., Giffard, B., Truche, R., Martin, F.: From substrate to VLSI: investigation of hardened SIMOX without epitaxy, for dose, dose rate and SEU phenomena. IEEE Trans. Nucl. Sci. 35, 1355–1360 (1988)

    Article  Google Scholar 

  5. Diem, B., Rey, P., Renard, S., Bosson, S.V., Bono, H., Michel, F., Delaye, M., Delapierre, G.: SOI SIMOX: from bulk to surface micromachining, a new age for silicon sensors and actuators. Sens. Actuators A 46, 8–16 (1995)

    Article  Google Scholar 

  6. Mokwa, W.: Advanced sensors and microsystems on SOI. Int. J. High Speed Electron Syst. 10, 147–153 (2000)

    Google Scholar 

  7. Kiihamaki, J., Ronkainen, H., Pekko, P., Kattelus, H., Theqvist, K.: Modular integration of CMOS and SOI-MEMS using “plug-up” concept. In: Proceedings of the 12th International Conference on TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems, vol. 2, pp. 1647–1650 (2003)

    Google Scholar 

  8. Gitelman, L., Stolyarova, S., Bar-Lev, S., Gutman, Z., Ochana, Y., Nemirovsky, Y.: CMOS-SOI-MEMS transistor for uncooled IR imaging. IEEE Trans. Electron. Devices 56, 1935–1942 (2009)

    Article  Google Scholar 

  9. Corcos, D., Goren, D., Nemirovsky, Y.: CMOS-SOI-MEMS transistor (TeraMOS) for TeraHertz imaging. In: IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems, COMCAS 2009, pp. 1–5 (2009)

    Google Scholar 

  10. Lu, C.-C., Liao, K.-H., Udrea, F., Covington, J.A., Gardner, J.W.: Multi-field simulations and characterization of CMOS-MEMS high-temperature smart gas sensors based on SOI technology. J. Micromech. Microeng. (2008). doi:10.1088/0960-1317/18/7/075010

  11. Ali, S., Santra, S., Haneef, I., Schwandt, C., Kumar, R., Milne, W., et al.: Nanowire hydrogen gas sensor employing CMOS micro-hotplate. In: Proceedings of 2009 IEEE Sensors, pp. 114–117 (2009)

    Google Scholar 

  12. Haneef, I., Coull, J.D., Ali, S.Z., Udrea, F., Hodson, H.P.: Laminar to turbulent flow transition measurements using an array of SOI-CMOS MEMS wall shear stress sensors. In: Proceedings of 2008 IEEE Sensors, pp. 57–61 (2008)

    Google Scholar 

  13. Gaudo, M.V., Abadal, G., Verd, J., Teva, J., Perez-Murano, F., Costa, E.F., Montserrat, J., Uranga, A., Esteve, J., Barniol, N.: Time-resolved evaporation rate of attoliter glycerine drops using on-chip CMOS mass sensors based on resonant silicon micro cantilevers. IEEE Trans. Nanotechnol. 6, 509–512 (2007)

    Article  Google Scholar 

  14. Villarroya, M., Figueras, E., Pérez-Murano, F., Campabadal, F., Esteve, J., Barniol, N.: SOI-silicon as structural layer for NEMS applications. Proc. SPIE 5116, 1–11 (2003)

    Article  Google Scholar 

  15. Chen, T.D., Kelly, T.W., Collins, D., Berthold, B., Brosnihan, T.J., Denison, T., Kuang, J., O’Kane, M., Weigold, J.W., Bain, D.: The next generation integrated MEMS and CMOS process on SOI wafers for overdamped accelerometers. In: Proceedings of the 13th International Conference on Solid-State Sensors, Actuators and Microsystems, TRANSDUCERS’05, vol. 2, pp. 1122–1125 (2005)

    Google Scholar 

  16. Davis, B.S., Denison, T., Kaung, J.: A monolithic high-g SOI-MEMS accelerometer for measuring projectile launch and flight accelerations. In: Proceedings of 2004 IEEE Sensors, pp. 296–299 (2004)

    Google Scholar 

  17. Takao, H., Ichikawa, T., Nakata, T., Sawada, K., Ishida, M.: Post-CMOS integration technology of thick-film SOI MEMS devices using micro bridge interconnections. In: Proceedings of the 21st International Conference on Micro Electro Mechanical Systems, MEMS 2008, pp. 359–362 (2008)

    Google Scholar 

  18. Takahashi, K., Mita, M., Nakada, M., Yamane, D., Higo, A., Fujita, H., Toshiyoshi, H.: Development of multi-user multi-chip SOI CMOS-MEMS processes. In: Proceedings of the 22nd International Conference on Micro Electro Mechanical Systems, MEMS 2009, pp. 701–704 (2009)

    Google Scholar 

  19. Guan, L., Sin, J.K.O., Liu, H., Xiong, Z.: A fully integrated SOI RF MEMS technology for system-on-a-chip applications. IEEE Trans. Electron. Devices 53, 167–172 (2006)

    Article  Google Scholar 

  20. Badila-Ciressan, N., Mazza, M., Grogg, D., Ionescu, A.: Nano-gap micro-electro-mechanical bulk lateral resonators with high quality factors and low motional resistances on thin Silicon-on-Insulator. Solid-State Electron. 52, 1394–1400 (2008)

    Article  Google Scholar 

  21. Cui, Y., Wei, Q.Q., Park, H.K., Lieber, C.M.: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289–1292 (2001). doi:10.1126/science.1062711

    Google Scholar 

  22. Hahm, J.-I., Lieber, C.M.: Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett 4, 51–54 (2004)

    Article  Google Scholar 

  23. Li, Z., Chen, Y., Kamins, T.I., Nauka, K., Williams, R.S.: Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Lett 4, 245–247 (2004)

    Article  Google Scholar 

  24. Patolsky, F., Zheng, G.F., Lieber, C.M.: Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat Protocols 1(4), 1711–1724 (2006)

    Article  Google Scholar 

  25. Talin, A.A., Hunter, L.L., Léonard, F., Rokad, B.: Large area, dense silicon nanowire array chemical sensors. Appl. Phys. Lett. (2006). doi:10.1063/1.2358214

  26. Elfström, N., Juhasz, R., Sychugov, I., Engfeldt, T., Kalström, A., Linros, J.: Surface charge sensitivity of silicon nanowires: size dependence. Nano Lett 7, 2608–2612 (2007)

    Article  Google Scholar 

  27. Lin, M.C., Chu, C.J., Tsai, L.C., Lin, H.Y., Wu, C.S., Wu, Y.P., Wu, Y.N., Shieh, D.B., Su, Y.W., Chen, C.D.: Optical switching of porphyrin-coated silicon nanowire field effect transistors. Nano Lett 7, 3656–3661 (2007)

    Article  Google Scholar 

  28. Elfström, N., Karlström, A.E., Linnros, J.: Silicon nanoribbons for electrical detection of biomolecules. Nano Lett 8, 945–949 (2008)

    Article  Google Scholar 

  29. Maki, W.C., Mishra, N.N., Cameron, E.G., Filanoski, B., Rastogi, S.K., Maki, G.K.: Nanowire-transistor based ultra-sensitive DNA methylation detection. Biosens. Bioelectron. 23, 780–787 (2008)

    Article  Google Scholar 

  30. Finot, E., Bourillot, E., Meunier-Prest, E., Lacroute, Y., Legay, G., Cherkaoui-Malki, M., Latruffe, N., Siri, O., Braunstein, P., Dereux, A.: Performance of interdigitated nanoelectrodes for electrochemical DNA biosensor. Ultramicroscopy 97, 441–449 (2003)

    Article  Google Scholar 

  31. Ueno, K., Hayashida, M., Ye, J.Y., Misawa, H.: Fabrication and electrochemical characterization of interdigitated nanoelectrode arrays. Electrochem. Commun. 7, 161–165 (2005)

    Article  Google Scholar 

  32. Zhu, X.S., Ahn, C.H.: On-chip electrochemical analysis system using nanoelectrodes and bioelectronic CMOS chip. IEEE Sens. J. 6(5), 1280–1286 (2006)

    Article  Google Scholar 

  33. Zou, Z.W., Kai, J.H., Rust, M.J., Han, J.Y., Ahn, C.H.: Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement. Sens. Actuators A 136, 518–526 (2007)

    Article  Google Scholar 

  34. Moreno-Hagelsieb, L., Foultier, B., Laurent, G., Pampin, R., Remacle, J., Raskin, J.-P., Flandre, D.: Electrical detection of DNA hybridization: three extraction techniques based on interdigitated Al/Al2O3 capacitors. Biosens. Bioelectron. 22, 2199–2207 (2007)

    Article  Google Scholar 

  35. Bergveld, P.: Thirty years of ISFETOLOGY: what happened in the past 30 years and what may happen in the next 30 years. Sens. Actuators B 88, 1–20 (2003)

    Article  Google Scholar 

  36. Tang, X., Blondeau, F., Prevot, P.-P., Pampin, R., Godfroid, E., Jonas, A., Nysten, B., Demoustier-Champagne, S., Iñiguez, B., Colinge, J.-P., Raskin, J.-P., Flandre, D., Bayot, V.: Direct protein detection with a nano-interdigitated gate MOSFET. Biosens. Bioelectron. 24, 3531–3537 (2009)

    Article  Google Scholar 

  37. Prevot, P.P., Adam, B., Zouaoui Boudjeltia, K., Brossard, M., Lins, L., Cauchie, P., Brasseur, R., Vanhaeverbeek, M., Vanhamme, L., Godfroid, E.: Anti-haemostatic effects of a serpin from the saliva of the tick Ixodes ricinus. J. Biol. Chem. 281, 26361–26369 (2006)

    Article  Google Scholar 

  38. Prevot, P.P., Couvreur, B., Denis, V., Brossard, M., Vanhamme, L., Godfroid, E.: Protective immunity against Ixodes ricinus induced by a Salivary serpin. Vaccine 25, 3284–3292 (2007)

    Article  Google Scholar 

  39. Poghossian, A., Cherstvy, A., Ingebrandt, S., Offenhäusser, A., Schöning, M.J.: Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices. Sens. Actuators B 111–112, 470–480 (2005)

    Google Scholar 

  40. Im, H., Huang, X.-J., Gu, B., Choi, Y.-K.: A dielectric-modulated field-effect transistor for biosensing. Nat. Nanotechnol. 2, 430–434 (2007)

    Article  Google Scholar 

  41. Park, K.Y., Kim, M.S., Choi, S.-Y.: Biosens. Bioelectron. 20, 2111–2115 (2005)

    Google Scholar 

  42. Patolsky, F., Lieber, C.M.: Nanowire Nanosens. Mater. Today 8, 20–28 (2005)

    Google Scholar 

  43. Flynn, N.T., Tran, T.N.T., Cima, M.J., Langer, R.: Long-term stability of self-assembled monolayers in biologically-related media. Langmuir 19, 10909–10915 (2003)

    Article  Google Scholar 

  44. Kim, D.-S., Park, J.-E., Shin, J.-K., Kim, P.-K., Lim, G., Shoji, S.: An extended gate FET-based biosensor integrated with a Si microfluidic channel for detection of protein complexes. Sens. Actuators B 117, 488–494 (2006)

    Article  Google Scholar 

  45. Gooding, J.J., Situmorang, M., Erokhin, P., Hibbert, D.B.: An assay for the determination of the amount of glucose oxidase immobilised in an enzyme electrode. Anal. Commun. 36, 225–228 (1999)

    Article  Google Scholar 

  46. Cecchet, F., Duwez, A.-S., Gabriel, S., Jérôme, C., Jérôme, R., Glinel, K., Demoustier-Champagne, S., Jonas, A.M., Nysten, B.: Atomic force microscopy investigation of the morphology and the biological activity of protein-modified surfaces for bio- and immunosensors. Anal. Chem. 79, 6488–6495 (2007)

    Article  Google Scholar 

  47. Razeghi, M.: Short-wavelength solar-blind detectors-status, prospects, and markets. Proc. IEEE 90(6), 1006–1014 (2002)

    Article  Google Scholar 

  48. Afzalian, A., Flandre, D.: Physical modeling and design of thin-film SOI lateral PIN photodiodes. IEEE Trans. Electron. Devices 52(6), 1116 (2005)

    Article  Google Scholar 

  49. Bulteel, O., Flandre, D.: Optimization of blue/UV sensors using PIN photodiodes in thin-film SOI technology. In: Proceedings of the 215th Electrochemical Society Meeting, San Francisco, CA, USA (2009)

    Google Scholar 

  50. OKI semiconductor website http://www2.okisemi.com

  51. Kilchytska, V., et al.: Electrical characterization of true Silicon-On-Nothing MOSFETs fabricated by Si layer transfer over a pre-etched cavity. Solid-State Electron. 51, 1238–1244 (2007)

    Article  Google Scholar 

  52. Bulteel, O., Afzalian, A., Flandre, D.: Fully integrated blue/UV SOI CMOS photosensor for biomedical and environmental applications. In: Proceedings of TAISA, Lyon, France (2007). doi:10.1007/s10470-009-9402-y

  53. Bulteel, O., et al.: Proceedings of eMBEC, Antwerp, Belgium (2008)

    Google Scholar 

  54. Karczemska, A., Sokolowska, A.: Materials for DNA sequencing chip. In: Proceedings of the 3rd International Conference on Novel Applications of Wide Bandgap Layers, Zakopane (2001). doi:10.1109/WBL.2001.946592

  55. De Souza, M., Bulteel, O., Flandre, D., Pavanello, M.A.: Temperature influence on the behaviour of lateral thin-film SOI PIN photodiode in the blue and UV range. In: Proceedings of the Sixth Workshop of the Thematic Network on Silicon-on-Insulator Technology, Devices and Circuits, EuroSOI’10, Grenoble, France (2010)

    Google Scholar 

  56. Simon, I., Arndt, M.: Thermal and gas-sensing properties of a micromachined thermal conductivity sensor for the detection of hydrogen in automotive applications. Sens. Actuators A 98, 104–108 (2002)

    Article  Google Scholar 

  57. Hellmich, W., et al.: Field-effect gas sensitivity changes in metal oxides. Sens. Actuators B 43, 132–139 (1997)

    Article  Google Scholar 

  58. Sabaté, N., et al.: Mechanical characterization of thermal flow sensors membranes. Sens. Actuators A 125, 260–266 (2005)

    Google Scholar 

  59. Noda, M., et al.: A new type of dielectric bolometer mode of detector pixel using ferroelectric thin film capacitors for infrared image sensor. Sens. Actuators 77, 39–44 (1999)

    Article  Google Scholar 

  60. Lee, S., Tanaka, T., Inoue, K.: Residual stress influence on the sensitivity of ultrasonic sensor having composite membrane structure. Sens. Actuators A 125, 242–248 (2005)

    Google Scholar 

  61. Horrillo, M., Sayago, I., Arés, L., Rodriguo, J., Gutiérrez, J., Götz, A., Gràcia, I., Fonseca, L., Cané, C., Lora-Tamayo, E.: Detection of low NO2 concentrations with low power micromachined tin oxide gas sensors. Sens. Actuators B 58, 325–329 (1999)

    Article  Google Scholar 

  62. Flandre, D., Adriaensen, S., Afzalian, A., Laconte, J., Levacq, D., Renaux, C., Vancaillie, L., Raskin, J.-P.: Intelligent SOI CMOS integrated circuits and sensors for heterogeneous environments and applications. In: IEEE Sensors, Orlando, FL, USA, vol. 28.2, pp. 1407–1412 (2002)

    Google Scholar 

  63. Rossi, C., Temple-Boyer, P., Estève, D.: Realization and performance of thin SiO2/SiN x membrane for microheater applications. Sens. Actuators A 64, 241–245 (1998)

    Article  Google Scholar 

  64. Laconte, J., Iker, F., Jorez, S., André, N., Pardoen, T., Proost, J., Flandre, D., Raskin, J.-P.: Thin films stress extraction using micromachined structures and wafer curvature measurements. Microelectron. Eng. 76, 219–226 (2004)

    Article  Google Scholar 

  65. Laconte, J., Dupont, C., Flandre, D., Raskin, J-Pc: SOI CMOS compatible low-power microheater optimization for the fabrication of smart gas sensors. IEEE Sens. J. 4, 670–680 (2004)

    Article  Google Scholar 

  66. Astié, S., Gué, A.M., Scheid, E., Guillemet, J.P.: Design of a low power SnO2 gas sensor integrated on silicon oxynitride membrane. Sens. Actuators B: Chem. 67, 84–88 (2000)

    Article  Google Scholar 

  67. Briand, D., Krauss, A., van der Schoot, B., Weimar, U., Barsan, N., Göpel, W., de Rooij, N.F.: Design and fabrication of high-temperature micro-hotplates for drop-coated gas sensors. Sens. Actuators B: Chem. 68, 223–233 (2000)

    Article  Google Scholar 

  68. Jorez, S., Laconte, J., Cornet, A., Raskin, J.-P.: Low cost instrumentation for MEMS thermal characterization. Meas. Sci. Technol. 16, 1833–1840 (2005)

    Article  Google Scholar 

  69. Udrea, F., Gardner, J.W., Setiadi, D., Covington, J.A., Dogaru, T., Lu, C.C., Milne, W.I.: Design and simulations of SOI-CMOS micro-hotplate gas sensors. Sens. Actuators B 78, 180–190 (2001)

    Article  Google Scholar 

  70. Gardner, J.W., Pike, A., De Rooij, N.F., Koudelka-Hep, M., Clerc, P.A., Hierlemann, A., Goepel, W.: Integrated array sensor for detecting organic solvents. Sens. Actuators B 26, 135–167 (1995)

    Article  Google Scholar 

  71. Dibbern, U.: A substrate for thin-film gas sensor in microelectronic technology. Sens. Actuators B 2, 63–67 (1990)

    Article  Google Scholar 

  72. Demarne, V., Grisel, A.: An integrated low-power thin-film CO gas sensor on silicon. Sens. Actuators B 4, 539–543 (1991)

    Article  Google Scholar 

  73. Krebs, P., Grisel, A.: A low power integrated catalytic gas sensor. Sens. Actuators B 13, 155–158 (1993)

    Article  Google Scholar 

  74. Gall, M.: The Si planar pellistor array, a detection unit for combustible gases. Sens. Actuators B 16, 260–264 (1993)

    Article  Google Scholar 

  75. Zanini, M., Visser, J.H., Rimai, L., Soltis, R.E., Kovalchuk, A., Hoffman, D.W., Logothetis, E.M., Brewer, L., Bynum, O., Bonne, U., Richard, M.A.: Fabrication and properties of Si-based high-sensitivity microcalorimetric gas sensor. Sens. Actuators A 48, 187–192 (1995)

    Article  Google Scholar 

  76. Suehle, J., Cavicchi, R., Gaitan, M., Semancik, S.: Tin oxide gas sensor fabricated using CMOS micro-hotplates and in situ processing. IEEE Electron. Device Lett. 143, 118–120 (1993)

    Article  Google Scholar 

  77. Ivanov, P., Laconte, J., Raskin, J.-P., Stankova, M., Sotter, E., Llobet, E., Vilanova, X., Flandre, D., Correig, X.: SOI-CMOS compatible low-power gas sensors using sputtered and drop-coated metal-oxide active layers. J. Microsyst. Technol. 12, 160–168 (2005)

    Article  Google Scholar 

  78. Ivanov, P., Stankova, M., Llobet, E., Vilanova, X., Gracia, I., Cane, C., Correig, X.: Microhotplate sensor arrays based on sputtered and screen-printed metal oxide films for selective detection of volatile compounds. Sens. Trans. Mag. 36, 16–23 (2003)

    Google Scholar 

  79. Korotchenkov, G., Brynzari, V., Dmitriev, S.: Electrical behaviour of SnO2 thin films in humid atmosphere. Sens. Actuators B 54, 197–201 (1999)

    Article  Google Scholar 

  80. Barrettino, D., Graf, M., Zimmermann, M., Hagleitner, C., Hierlemann, A., Baltes, H.: A smart single-chip microhotplate-based gas sensor system in CMOS-technology. Analog Integr. Circuits Signal Process. 39, 275–287 (2004)

    Article  Google Scholar 

  81. Laconte, J., Rue. B., Flandre, D., Raskin, J.-P.: Fully CMOS-SOI compatible low-power directional flow sensor. In: Proceedings of the IEEE Sensors 2004 Conference, Vienna, Austria (2004)

    Google Scholar 

  82. Lim, H.C., et al.: Flexible membrane pressure sensor. Sens. Actuators A 119, 332–335 (2005)

    Article  Google Scholar 

  83. Singh, R., et al.: A silicon piezoresistive pressure sensor. In: Proceedings of the First IEEE International Workshop on Electronic Design, Test and Applications, vol. 1, pp. 181–184 (2002)

    Google Scholar 

  84. Jung, H.-M., Cho, S.-B., Lee, J.-H.: Design of smart piezoresistive pressure sensor. In: IEEE Proceedings of the Fifth Russian-Korean International Symposium on Science and Technology, pp. 202–205 (2001)

    Google Scholar 

  85. Pedersen, C., et al.: Combined differential and relative pressure sensor based on a double-bridged structure. In: Proceedings of IEEE Sensors, pp. 698–703 (2003)

    Google Scholar 

  86. Chau, M.-T., Dominguez, D., Bonvalot, B., Suski, J.: CMOS fully digital integrated pressure sensors. Sens. Actuators A 60, 86–89 (1997)

    Article  Google Scholar 

  87. Neumeister, J., Schuster, G., Von Münch, W.: A silicon pressure sensor using MOS ring oscillators. Sens. Actuators A 7, 167–176 (1985)

    Article  Google Scholar 

  88. Schörner, R., Poppinger, M., Eibl, J.: Silicon pressure sensor with frequency output. Sens. Actuators A 21, 73–78 (1990)

    Article  Google Scholar 

  89. Wang, Y., Zheng, X., Liu, L., Li, Z.: A novel structure of pressure sensors. IEEE Trans. Electron. Devices 38, 1797–1802 (1991)

    Article  Google Scholar 

  90. Gallon, C., et al.: Electrical analysis of mechanical stress induced by STI in short MOSFETs using externally applied stress. IEEE Trans. Electron. Devices 51, 1254–1261 (2004)

    Article  Google Scholar 

  91. Rinaldi, G., Stiharu, I., Packirisamy, M., Nerguizian, V., Landry, R., Raskin, J.-P.: Dynamic pressure as a measure of gas turbine engine (GTE) performance. Meas. Sci. Technol. (2010). doi:10.1088/0957-0233/21/4/045201

  92. Wee, K.W., et al.: Novel electrical detection of label-free disease marker proteins using piezoresistive self-sensing micro-cantilevers. Biosens. Bioelectron. 20, 1932–1938 (2005)

    Article  Google Scholar 

  93. Lubecke, V.M., Barber, B., Chan, E., Lopez, D., Gross, M.E., Gammel, P.: Self-assembling MEMS variable and fixed RF inductors. IEEE Trans. Microwav. Theory Tech. 49, 2093–2098 (2001)

    Article  Google Scholar 

  94. Dahlmann, G.W., Yeatman, E.M., Young, P., Robertson, I.D., Lucyszyn, S.: Fabrication, RF characteristics and mechanical stability of self-assembled 3D microwave inductors. Sens. Actuators A: Phys. 97–98, 215–220 (2002)

    Article  Google Scholar 

  95. Zou, J., Liu, C., Trainor, D.R., Chen, J., Schutt-Ainé, J.E., Chapman, P.L.: Development of three-dimensional inductors using plastic deformation magnetic assembly (PDMA). IEEE Trans. Microwav. Theory Tech. 51, 1067–1075 (2003)

    Article  Google Scholar 

  96. Nguyen, H.D., Hah, D., Patterson, P.R., Chao, R., Piyawattanametha, W., Lau Erwin, K.: IEEE J. Microelectromech. Syst. 13(3), 406–413 (2004)

    Google Scholar 

  97. Sasaki, M., Briand, D., Noell, W., de Rooij, N.F., Hane, K.: Three-dimensional SOI-MEMS constructed by buckled bridges and vertical comb drive actuator. IEEE J. Sel. Top. Quantum Electron. 10, 455–461 (2004)

    Article  Google Scholar 

  98. Freund, L.B., Suresh, S.: Thin film materials. Cambridge University Press, UK (2003)

    Google Scholar 

  99. Ohring, M.: Materials science of thin films, deposition and structure. Academic Press, USA (2002)

    Google Scholar 

  100. Raskin, J.-P., Iker, F., André, N., Olbrecht, B., Pardoen, T., Flandre, D.: Bulk and surface micromachined MEMS in thin film SOI technology. Electrochim. Acta 52, 2850–2861 (2007)

    Article  Google Scholar 

  101. André, N., Iker, F., Raskin, J.-P.: CMOS compatible 3D MEMS in SOI technology. In: Proceedings of the Third Workshop of the Thematic Network on Silicon on Insulator Technology, Devices and Circuits, EUROSOI’07, Leuven, Belgium, pp. 69–70 (2007)

    Google Scholar 

  102. Fan, Z., Chen, J., Bullen, D., Liu, C., Delcmyn, F.: Design and fabrication of artificial lateral line flow sensors. J. Micromech. Microeng. 12, 655–661 (2002)

    Article  Google Scholar 

  103. Chen, J., Liu, C.: Development and characterization of surface micromachined, out-of-plane hot-wire anemometer. IEEE J. Microelectromech. Syst. 12, 979–988 (2003)

    Article  Google Scholar 

  104. Iker, F., Andre, N., Pardoen, T., Raskin, J.-P.: Three-dimensional self-assembled sensors in thin film SOI technology. IEEE J. Microelectromech. Syst. 15, 1687–1697 (2006)

    Article  Google Scholar 

  105. Makinwa, K.A.A., Huijsing, J.H.: A smart wind sensor using thermal sigma-delta modulation techniques. Sens. Actuators A 97–98, 15–20 (2002)

    Google Scholar 

  106. Kohl, F., et al.: Development of miniaturized semiconductor flow sensors. Measurement 33, 109–119 (2003)

    Article  Google Scholar 

  107. Fürjes, P., et al.: Thermal characterisation of a direction dependent flow sensor. Sens. Actuators A 115, 417–423

    Google Scholar 

  108. Laconte, J., Flandre, D., Raskin, J.-P.: Micromachined Thin-Film Sensors for SOI-CMOS Co-Integration. Springer (2006). ISBN-10 0-387-28842-2

    Google Scholar 

  109. André, N., Rue, B., Renaux, C., Flandre, D., Raskin, J.-P.: 3D capacitive MEMS sensors co-integrated with SOI CMOS circuits. In: Proceedings of the Fourth Workshop of the Thematic Network on Silicon on Insulator Technology, Devices and Circuits, EUROSOI’08, Tyndall National Institute, Cork, Ireland, pp. 75–76 (2008)

    Google Scholar 

  110. Sobieski, S., André, N., Raskin, J.-P., Francis, L.A.: Temperature effect on Lorentz based magnetometer. Sens. Lett. 7, 456–459 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank all the PhD students, senior researchers, and professors who have actively participated to the simulation and experimental results presented in this chapter: Mr. N. André, Mr. B. Olbrechts, Mr. B. Rue, Mr. Olivier Bulteel, Mr. R. Pampin, Dr. L. Moreno Hagelsieb, Dr. X. Tang, Dr. P. Ivanov, Dr. J. Laconte, Dr. F. Iker, Dr. G. Rinaldi, Prof. S. Demoustier-Champagne, Prof. I. Stiharu and Prof. T. Pardoen. We would like to also thank Mr. P. Simon (Welcome) for performing some of measurements, the UCL clean rooms technicians and engineers (Winfab) for their precious support during the processing of the SOI-MEMS. This research has been financially supported by the European Commission through Networks of Excellence: SINANO, NANOSIL and EuroSOI+, by Walloon Region: MEMSACOM, CAVIMA, NANOTIC, MINATIS, and the Communauté française de Belgique: Action Concertée de Recherche, ARC no. 05/10-330, Innovative technologies for physical and (bio)chemical nano-sensors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-P. Raskin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Raskin, JP., Francis, L., Flandre, D. (2011). Sensing and MEMS Devices in Thin-Film SOI MOS Technology. In: Nazarov, A., Colinge, JP., Balestra, F., Raskin, JP., Gamiz, F., Lysenko, V. (eds) Semiconductor-On-Insulator Materials for Nanoelectronics Applications. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15868-1_20

Download citation

Publish with us

Policies and ethics