Advertisement

Sensing and MEMS Devices in Thin-Film SOI MOS Technology

  • J.-P. RaskinEmail author
  • L. Francis
  • D. Flandre
Chapter
  • 1.8k Downloads
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

Silicon-on-Insulator (SOI) technology is emerging as a major contender for heterogeneous microsystems applications. In this work, we demonstrate the advantages of SOI technology for building thin-film field-effect biosensors and optical detectors, physical and chemical sensors on thin dielectric membrane as well as three-dimensional (3D) microelectromechanical (MEMS) sensors and actuators. The flatness and robustness of the thin membrane as well as the self-assembling of 3D microstructures rely on the chemical release of the microstructures and on the control of the residual stresses building up in multilayered structures undergoing a complete thermal process. The deflection of multilayered structures made of both elastic and plastic thin films results from the thermal expansion coefficient mismatches between the layers and from the plastic flow of a metallic layer. The proposed CMOS-compatible fabrication processes were successfully applied to suspended sensors on thin dielectric membranes such as gas-composition, gas-flow and pressure sensors and to 3D self-assembled microstructures such as thermal and flow sensors.

Keywords

Gate Oxide Flow Sensor Ring Oscillator Sacrificial Layer Thermal Uniformity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank all the PhD students, senior researchers, and professors who have actively participated to the simulation and experimental results presented in this chapter: Mr. N. André, Mr. B. Olbrechts, Mr. B. Rue, Mr. Olivier Bulteel, Mr. R. Pampin, Dr. L. Moreno Hagelsieb, Dr. X. Tang, Dr. P. Ivanov, Dr. J. Laconte, Dr. F. Iker, Dr. G. Rinaldi, Prof. S. Demoustier-Champagne, Prof. I. Stiharu and Prof. T. Pardoen. We would like to also thank Mr. P. Simon (Welcome) for performing some of measurements, the UCL clean rooms technicians and engineers (Winfab) for their precious support during the processing of the SOI-MEMS. This research has been financially supported by the European Commission through Networks of Excellence: SINANO, NANOSIL and EuroSOI+, by Walloon Region: MEMSACOM, CAVIMA, NANOTIC, MINATIS, and the Communauté française de Belgique: Action Concertée de Recherche, ARC no. 05/10-330, Innovative technologies for physical and (bio)chemical nano-sensors.

References

  1. 1.
    Bernstein, K., Rohrer, N.: SOI circuit design concepts. Kluwer Academic Publishers, Dordrecht (2000)Google Scholar
  2. 2.
    Flandre, D., Raskin, J.-P., Vanhoenacker, D.: SOI CMOS transistors for RF and microwave applications. In: Dean, M.J., Fjeldly, T.A. (eds.) CMOS RF Modeling, Characterization and Applications. World Scientific Publishing Co., London (2002). ISBN 981-02-4905-5Google Scholar
  3. 3.
    Flandre, D.: Silicon-on-Insulator technology for high temperature metal oxide semiconductor devices and circuits. In: Kirschman, R. (ed.) High temperature electronics. IEEE Press, Piscataway (1998)Google Scholar
  4. 4.
    Leray, J.L., Dupont-Nivet, E., Musseau, O., Coic, Y.M., Umbert, A., Lalande, P., Pere, J.F., Auberton-Herve, A.J., Bruel, M., Jaussaud, C., Margail, J., Giffard, B., Truche, R., Martin, F.: From substrate to VLSI: investigation of hardened SIMOX without epitaxy, for dose, dose rate and SEU phenomena. IEEE Trans. Nucl. Sci. 35, 1355–1360 (1988)CrossRefGoogle Scholar
  5. 5.
    Diem, B., Rey, P., Renard, S., Bosson, S.V., Bono, H., Michel, F., Delaye, M., Delapierre, G.: SOI SIMOX: from bulk to surface micromachining, a new age for silicon sensors and actuators. Sens. Actuators A 46, 8–16 (1995)CrossRefGoogle Scholar
  6. 6.
    Mokwa, W.: Advanced sensors and microsystems on SOI. Int. J. High Speed Electron Syst. 10, 147–153 (2000)Google Scholar
  7. 7.
    Kiihamaki, J., Ronkainen, H., Pekko, P., Kattelus, H., Theqvist, K.: Modular integration of CMOS and SOI-MEMS using “plug-up” concept. In: Proceedings of the 12th International Conference on TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems, vol. 2, pp. 1647–1650 (2003)Google Scholar
  8. 8.
    Gitelman, L., Stolyarova, S., Bar-Lev, S., Gutman, Z., Ochana, Y., Nemirovsky, Y.: CMOS-SOI-MEMS transistor for uncooled IR imaging. IEEE Trans. Electron. Devices 56, 1935–1942 (2009)CrossRefGoogle Scholar
  9. 9.
    Corcos, D., Goren, D., Nemirovsky, Y.: CMOS-SOI-MEMS transistor (TeraMOS) for TeraHertz imaging. In: IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems, COMCAS 2009, pp. 1–5 (2009)Google Scholar
  10. 10.
    Lu, C.-C., Liao, K.-H., Udrea, F., Covington, J.A., Gardner, J.W.: Multi-field simulations and characterization of CMOS-MEMS high-temperature smart gas sensors based on SOI technology. J. Micromech. Microeng. (2008). doi: 10.1088/0960-1317/18/7/075010
  11. 11.
    Ali, S., Santra, S., Haneef, I., Schwandt, C., Kumar, R., Milne, W., et al.: Nanowire hydrogen gas sensor employing CMOS micro-hotplate. In: Proceedings of 2009 IEEE Sensors, pp. 114–117 (2009)Google Scholar
  12. 12.
    Haneef, I., Coull, J.D., Ali, S.Z., Udrea, F., Hodson, H.P.: Laminar to turbulent flow transition measurements using an array of SOI-CMOS MEMS wall shear stress sensors. In: Proceedings of 2008 IEEE Sensors, pp. 57–61 (2008)Google Scholar
  13. 13.
    Gaudo, M.V., Abadal, G., Verd, J., Teva, J., Perez-Murano, F., Costa, E.F., Montserrat, J., Uranga, A., Esteve, J., Barniol, N.: Time-resolved evaporation rate of attoliter glycerine drops using on-chip CMOS mass sensors based on resonant silicon micro cantilevers. IEEE Trans. Nanotechnol. 6, 509–512 (2007)CrossRefGoogle Scholar
  14. 14.
    Villarroya, M., Figueras, E., Pérez-Murano, F., Campabadal, F., Esteve, J., Barniol, N.: SOI-silicon as structural layer for NEMS applications. Proc. SPIE 5116, 1–11 (2003)CrossRefGoogle Scholar
  15. 15.
    Chen, T.D., Kelly, T.W., Collins, D., Berthold, B., Brosnihan, T.J., Denison, T., Kuang, J., O’Kane, M., Weigold, J.W., Bain, D.: The next generation integrated MEMS and CMOS process on SOI wafers for overdamped accelerometers. In: Proceedings of the 13th International Conference on Solid-State Sensors, Actuators and Microsystems, TRANSDUCERS’05, vol. 2, pp. 1122–1125 (2005)Google Scholar
  16. 16.
    Davis, B.S., Denison, T., Kaung, J.: A monolithic high-g SOI-MEMS accelerometer for measuring projectile launch and flight accelerations. In: Proceedings of 2004 IEEE Sensors, pp. 296–299 (2004)Google Scholar
  17. 17.
    Takao, H., Ichikawa, T., Nakata, T., Sawada, K., Ishida, M.: Post-CMOS integration technology of thick-film SOI MEMS devices using micro bridge interconnections. In: Proceedings of the 21st International Conference on Micro Electro Mechanical Systems, MEMS 2008, pp. 359–362 (2008)Google Scholar
  18. 18.
    Takahashi, K., Mita, M., Nakada, M., Yamane, D., Higo, A., Fujita, H., Toshiyoshi, H.: Development of multi-user multi-chip SOI CMOS-MEMS processes. In: Proceedings of the 22nd International Conference on Micro Electro Mechanical Systems, MEMS 2009, pp. 701–704 (2009)Google Scholar
  19. 19.
    Guan, L., Sin, J.K.O., Liu, H., Xiong, Z.: A fully integrated SOI RF MEMS technology for system-on-a-chip applications. IEEE Trans. Electron. Devices 53, 167–172 (2006)CrossRefGoogle Scholar
  20. 20.
    Badila-Ciressan, N., Mazza, M., Grogg, D., Ionescu, A.: Nano-gap micro-electro-mechanical bulk lateral resonators with high quality factors and low motional resistances on thin Silicon-on-Insulator. Solid-State Electron. 52, 1394–1400 (2008)CrossRefGoogle Scholar
  21. 21.
    Cui, Y., Wei, Q.Q., Park, H.K., Lieber, C.M.: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289–1292 (2001). doi: 10.1126/science.1062711 Google Scholar
  22. 22.
    Hahm, J.-I., Lieber, C.M.: Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett 4, 51–54 (2004)CrossRefGoogle Scholar
  23. 23.
    Li, Z., Chen, Y., Kamins, T.I., Nauka, K., Williams, R.S.: Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Lett 4, 245–247 (2004)CrossRefGoogle Scholar
  24. 24.
    Patolsky, F., Zheng, G.F., Lieber, C.M.: Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat Protocols 1(4), 1711–1724 (2006)CrossRefGoogle Scholar
  25. 25.
    Talin, A.A., Hunter, L.L., Léonard, F., Rokad, B.: Large area, dense silicon nanowire array chemical sensors. Appl. Phys. Lett. (2006). doi: 10.1063/1.2358214
  26. 26.
    Elfström, N., Juhasz, R., Sychugov, I., Engfeldt, T., Kalström, A., Linros, J.: Surface charge sensitivity of silicon nanowires: size dependence. Nano Lett 7, 2608–2612 (2007)CrossRefGoogle Scholar
  27. 27.
    Lin, M.C., Chu, C.J., Tsai, L.C., Lin, H.Y., Wu, C.S., Wu, Y.P., Wu, Y.N., Shieh, D.B., Su, Y.W., Chen, C.D.: Optical switching of porphyrin-coated silicon nanowire field effect transistors. Nano Lett 7, 3656–3661 (2007)CrossRefGoogle Scholar
  28. 28.
    Elfström, N., Karlström, A.E., Linnros, J.: Silicon nanoribbons for electrical detection of biomolecules. Nano Lett 8, 945–949 (2008)CrossRefGoogle Scholar
  29. 29.
    Maki, W.C., Mishra, N.N., Cameron, E.G., Filanoski, B., Rastogi, S.K., Maki, G.K.: Nanowire-transistor based ultra-sensitive DNA methylation detection. Biosens. Bioelectron. 23, 780–787 (2008)CrossRefGoogle Scholar
  30. 30.
    Finot, E., Bourillot, E., Meunier-Prest, E., Lacroute, Y., Legay, G., Cherkaoui-Malki, M., Latruffe, N., Siri, O., Braunstein, P., Dereux, A.: Performance of interdigitated nanoelectrodes for electrochemical DNA biosensor. Ultramicroscopy 97, 441–449 (2003)CrossRefGoogle Scholar
  31. 31.
    Ueno, K., Hayashida, M., Ye, J.Y., Misawa, H.: Fabrication and electrochemical characterization of interdigitated nanoelectrode arrays. Electrochem. Commun. 7, 161–165 (2005)CrossRefGoogle Scholar
  32. 32.
    Zhu, X.S., Ahn, C.H.: On-chip electrochemical analysis system using nanoelectrodes and bioelectronic CMOS chip. IEEE Sens. J. 6(5), 1280–1286 (2006)CrossRefGoogle Scholar
  33. 33.
    Zou, Z.W., Kai, J.H., Rust, M.J., Han, J.Y., Ahn, C.H.: Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement. Sens. Actuators A 136, 518–526 (2007)CrossRefGoogle Scholar
  34. 34.
    Moreno-Hagelsieb, L., Foultier, B., Laurent, G., Pampin, R., Remacle, J., Raskin, J.-P., Flandre, D.: Electrical detection of DNA hybridization: three extraction techniques based on interdigitated Al/Al2O3 capacitors. Biosens. Bioelectron. 22, 2199–2207 (2007)CrossRefGoogle Scholar
  35. 35.
    Bergveld, P.: Thirty years of ISFETOLOGY: what happened in the past 30 years and what may happen in the next 30 years. Sens. Actuators B 88, 1–20 (2003)CrossRefGoogle Scholar
  36. 36.
    Tang, X., Blondeau, F., Prevot, P.-P., Pampin, R., Godfroid, E., Jonas, A., Nysten, B., Demoustier-Champagne, S., Iñiguez, B., Colinge, J.-P., Raskin, J.-P., Flandre, D., Bayot, V.: Direct protein detection with a nano-interdigitated gate MOSFET. Biosens. Bioelectron. 24, 3531–3537 (2009)CrossRefGoogle Scholar
  37. 37.
    Prevot, P.P., Adam, B., Zouaoui Boudjeltia, K., Brossard, M., Lins, L., Cauchie, P., Brasseur, R., Vanhaeverbeek, M., Vanhamme, L., Godfroid, E.: Anti-haemostatic effects of a serpin from the saliva of the tick Ixodes ricinus. J. Biol. Chem. 281, 26361–26369 (2006)CrossRefGoogle Scholar
  38. 38.
    Prevot, P.P., Couvreur, B., Denis, V., Brossard, M., Vanhamme, L., Godfroid, E.: Protective immunity against Ixodes ricinus induced by a Salivary serpin. Vaccine 25, 3284–3292 (2007)CrossRefGoogle Scholar
  39. 39.
    Poghossian, A., Cherstvy, A., Ingebrandt, S., Offenhäusser, A., Schöning, M.J.: Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices. Sens. Actuators B 111–112, 470–480 (2005)Google Scholar
  40. 40.
    Im, H., Huang, X.-J., Gu, B., Choi, Y.-K.: A dielectric-modulated field-effect transistor for biosensing. Nat. Nanotechnol. 2, 430–434 (2007)CrossRefGoogle Scholar
  41. 41.
    Park, K.Y., Kim, M.S., Choi, S.-Y.: Biosens. Bioelectron. 20, 2111–2115 (2005)Google Scholar
  42. 42.
    Patolsky, F., Lieber, C.M.: Nanowire Nanosens. Mater. Today 8, 20–28 (2005)Google Scholar
  43. 43.
    Flynn, N.T., Tran, T.N.T., Cima, M.J., Langer, R.: Long-term stability of self-assembled monolayers in biologically-related media. Langmuir 19, 10909–10915 (2003)CrossRefGoogle Scholar
  44. 44.
    Kim, D.-S., Park, J.-E., Shin, J.-K., Kim, P.-K., Lim, G., Shoji, S.: An extended gate FET-based biosensor integrated with a Si microfluidic channel for detection of protein complexes. Sens. Actuators B 117, 488–494 (2006)CrossRefGoogle Scholar
  45. 45.
    Gooding, J.J., Situmorang, M., Erokhin, P., Hibbert, D.B.: An assay for the determination of the amount of glucose oxidase immobilised in an enzyme electrode. Anal. Commun. 36, 225–228 (1999)CrossRefGoogle Scholar
  46. 46.
    Cecchet, F., Duwez, A.-S., Gabriel, S., Jérôme, C., Jérôme, R., Glinel, K., Demoustier-Champagne, S., Jonas, A.M., Nysten, B.: Atomic force microscopy investigation of the morphology and the biological activity of protein-modified surfaces for bio- and immunosensors. Anal. Chem. 79, 6488–6495 (2007)CrossRefGoogle Scholar
  47. 47.
    Razeghi, M.: Short-wavelength solar-blind detectors-status, prospects, and markets. Proc. IEEE 90(6), 1006–1014 (2002)CrossRefGoogle Scholar
  48. 48.
    Afzalian, A., Flandre, D.: Physical modeling and design of thin-film SOI lateral PIN photodiodes. IEEE Trans. Electron. Devices 52(6), 1116 (2005)CrossRefGoogle Scholar
  49. 49.
    Bulteel, O., Flandre, D.: Optimization of blue/UV sensors using PIN photodiodes in thin-film SOI technology. In: Proceedings of the 215th Electrochemical Society Meeting, San Francisco, CA, USA (2009)Google Scholar
  50. 50.
    OKI semiconductor website http://www2.okisemi.com
  51. 51.
    Kilchytska, V., et al.: Electrical characterization of true Silicon-On-Nothing MOSFETs fabricated by Si layer transfer over a pre-etched cavity. Solid-State Electron. 51, 1238–1244 (2007)CrossRefGoogle Scholar
  52. 52.
    Bulteel, O., Afzalian, A., Flandre, D.: Fully integrated blue/UV SOI CMOS photosensor for biomedical and environmental applications. In: Proceedings of TAISA, Lyon, France (2007). doi: 10.1007/s10470-009-9402-y
  53. 53.
    Bulteel, O., et al.: Proceedings of eMBEC, Antwerp, Belgium (2008)Google Scholar
  54. 54.
    Karczemska, A., Sokolowska, A.: Materials for DNA sequencing chip. In: Proceedings of the 3rd International Conference on Novel Applications of Wide Bandgap Layers, Zakopane (2001). doi: 10.1109/WBL.2001.946592
  55. 55.
    De Souza, M., Bulteel, O., Flandre, D., Pavanello, M.A.: Temperature influence on the behaviour of lateral thin-film SOI PIN photodiode in the blue and UV range. In: Proceedings of the Sixth Workshop of the Thematic Network on Silicon-on-Insulator Technology, Devices and Circuits, EuroSOI’10, Grenoble, France (2010)Google Scholar
  56. 56.
    Simon, I., Arndt, M.: Thermal and gas-sensing properties of a micromachined thermal conductivity sensor for the detection of hydrogen in automotive applications. Sens. Actuators A 98, 104–108 (2002)CrossRefGoogle Scholar
  57. 57.
    Hellmich, W., et al.: Field-effect gas sensitivity changes in metal oxides. Sens. Actuators B 43, 132–139 (1997)CrossRefGoogle Scholar
  58. 58.
    Sabaté, N., et al.: Mechanical characterization of thermal flow sensors membranes. Sens. Actuators A 125, 260–266 (2005)Google Scholar
  59. 59.
    Noda, M., et al.: A new type of dielectric bolometer mode of detector pixel using ferroelectric thin film capacitors for infrared image sensor. Sens. Actuators 77, 39–44 (1999)CrossRefGoogle Scholar
  60. 60.
    Lee, S., Tanaka, T., Inoue, K.: Residual stress influence on the sensitivity of ultrasonic sensor having composite membrane structure. Sens. Actuators A 125, 242–248 (2005)Google Scholar
  61. 61.
    Horrillo, M., Sayago, I., Arés, L., Rodriguo, J., Gutiérrez, J., Götz, A., Gràcia, I., Fonseca, L., Cané, C., Lora-Tamayo, E.: Detection of low NO2 concentrations with low power micromachined tin oxide gas sensors. Sens. Actuators B 58, 325–329 (1999)CrossRefGoogle Scholar
  62. 62.
    Flandre, D., Adriaensen, S., Afzalian, A., Laconte, J., Levacq, D., Renaux, C., Vancaillie, L., Raskin, J.-P.: Intelligent SOI CMOS integrated circuits and sensors for heterogeneous environments and applications. In: IEEE Sensors, Orlando, FL, USA, vol. 28.2, pp. 1407–1412 (2002)Google Scholar
  63. 63.
    Rossi, C., Temple-Boyer, P., Estève, D.: Realization and performance of thin SiO2/SiNx membrane for microheater applications. Sens. Actuators A 64, 241–245 (1998)CrossRefGoogle Scholar
  64. 64.
    Laconte, J., Iker, F., Jorez, S., André, N., Pardoen, T., Proost, J., Flandre, D., Raskin, J.-P.: Thin films stress extraction using micromachined structures and wafer curvature measurements. Microelectron. Eng. 76, 219–226 (2004)CrossRefGoogle Scholar
  65. 65.
    Laconte, J., Dupont, C., Flandre, D., Raskin, J-Pc: SOI CMOS compatible low-power microheater optimization for the fabrication of smart gas sensors. IEEE Sens. J. 4, 670–680 (2004)CrossRefGoogle Scholar
  66. 66.
    Astié, S., Gué, A.M., Scheid, E., Guillemet, J.P.: Design of a low power SnO2 gas sensor integrated on silicon oxynitride membrane. Sens. Actuators B: Chem. 67, 84–88 (2000)CrossRefGoogle Scholar
  67. 67.
    Briand, D., Krauss, A., van der Schoot, B., Weimar, U., Barsan, N., Göpel, W., de Rooij, N.F.: Design and fabrication of high-temperature micro-hotplates for drop-coated gas sensors. Sens. Actuators B: Chem. 68, 223–233 (2000)CrossRefGoogle Scholar
  68. 68.
    Jorez, S., Laconte, J., Cornet, A., Raskin, J.-P.: Low cost instrumentation for MEMS thermal characterization. Meas. Sci. Technol. 16, 1833–1840 (2005)CrossRefGoogle Scholar
  69. 69.
    Udrea, F., Gardner, J.W., Setiadi, D., Covington, J.A., Dogaru, T., Lu, C.C., Milne, W.I.: Design and simulations of SOI-CMOS micro-hotplate gas sensors. Sens. Actuators B 78, 180–190 (2001)CrossRefGoogle Scholar
  70. 70.
    Gardner, J.W., Pike, A., De Rooij, N.F., Koudelka-Hep, M., Clerc, P.A., Hierlemann, A., Goepel, W.: Integrated array sensor for detecting organic solvents. Sens. Actuators B 26, 135–167 (1995)CrossRefGoogle Scholar
  71. 71.
    Dibbern, U.: A substrate for thin-film gas sensor in microelectronic technology. Sens. Actuators B 2, 63–67 (1990)CrossRefGoogle Scholar
  72. 72.
    Demarne, V., Grisel, A.: An integrated low-power thin-film CO gas sensor on silicon. Sens. Actuators B 4, 539–543 (1991)CrossRefGoogle Scholar
  73. 73.
    Krebs, P., Grisel, A.: A low power integrated catalytic gas sensor. Sens. Actuators B 13, 155–158 (1993)CrossRefGoogle Scholar
  74. 74.
    Gall, M.: The Si planar pellistor array, a detection unit for combustible gases. Sens. Actuators B 16, 260–264 (1993)CrossRefGoogle Scholar
  75. 75.
    Zanini, M., Visser, J.H., Rimai, L., Soltis, R.E., Kovalchuk, A., Hoffman, D.W., Logothetis, E.M., Brewer, L., Bynum, O., Bonne, U., Richard, M.A.: Fabrication and properties of Si-based high-sensitivity microcalorimetric gas sensor. Sens. Actuators A 48, 187–192 (1995)CrossRefGoogle Scholar
  76. 76.
    Suehle, J., Cavicchi, R., Gaitan, M., Semancik, S.: Tin oxide gas sensor fabricated using CMOS micro-hotplates and in situ processing. IEEE Electron. Device Lett. 143, 118–120 (1993)CrossRefGoogle Scholar
  77. 77.
    Ivanov, P., Laconte, J., Raskin, J.-P., Stankova, M., Sotter, E., Llobet, E., Vilanova, X., Flandre, D., Correig, X.: SOI-CMOS compatible low-power gas sensors using sputtered and drop-coated metal-oxide active layers. J. Microsyst. Technol. 12, 160–168 (2005)CrossRefGoogle Scholar
  78. 78.
    Ivanov, P., Stankova, M., Llobet, E., Vilanova, X., Gracia, I., Cane, C., Correig, X.: Microhotplate sensor arrays based on sputtered and screen-printed metal oxide films for selective detection of volatile compounds. Sens. Trans. Mag. 36, 16–23 (2003)Google Scholar
  79. 79.
    Korotchenkov, G., Brynzari, V., Dmitriev, S.: Electrical behaviour of SnO2 thin films in humid atmosphere. Sens. Actuators B 54, 197–201 (1999)CrossRefGoogle Scholar
  80. 80.
    Barrettino, D., Graf, M., Zimmermann, M., Hagleitner, C., Hierlemann, A., Baltes, H.: A smart single-chip microhotplate-based gas sensor system in CMOS-technology. Analog Integr. Circuits Signal Process. 39, 275–287 (2004)CrossRefGoogle Scholar
  81. 81.
    Laconte, J., Rue. B., Flandre, D., Raskin, J.-P.: Fully CMOS-SOI compatible low-power directional flow sensor. In: Proceedings of the IEEE Sensors 2004 Conference, Vienna, Austria (2004)Google Scholar
  82. 82.
    Lim, H.C., et al.: Flexible membrane pressure sensor. Sens. Actuators A 119, 332–335 (2005)CrossRefGoogle Scholar
  83. 83.
    Singh, R., et al.: A silicon piezoresistive pressure sensor. In: Proceedings of the First IEEE International Workshop on Electronic Design, Test and Applications, vol. 1, pp. 181–184 (2002)Google Scholar
  84. 84.
    Jung, H.-M., Cho, S.-B., Lee, J.-H.: Design of smart piezoresistive pressure sensor. In: IEEE Proceedings of the Fifth Russian-Korean International Symposium on Science and Technology, pp. 202–205 (2001)Google Scholar
  85. 85.
    Pedersen, C., et al.: Combined differential and relative pressure sensor based on a double-bridged structure. In: Proceedings of IEEE Sensors, pp. 698–703 (2003)Google Scholar
  86. 86.
    Chau, M.-T., Dominguez, D., Bonvalot, B., Suski, J.: CMOS fully digital integrated pressure sensors. Sens. Actuators A 60, 86–89 (1997)CrossRefGoogle Scholar
  87. 87.
    Neumeister, J., Schuster, G., Von Münch, W.: A silicon pressure sensor using MOS ring oscillators. Sens. Actuators A 7, 167–176 (1985)CrossRefGoogle Scholar
  88. 88.
    Schörner, R., Poppinger, M., Eibl, J.: Silicon pressure sensor with frequency output. Sens. Actuators A 21, 73–78 (1990)CrossRefGoogle Scholar
  89. 89.
    Wang, Y., Zheng, X., Liu, L., Li, Z.: A novel structure of pressure sensors. IEEE Trans. Electron. Devices 38, 1797–1802 (1991)CrossRefGoogle Scholar
  90. 90.
    Gallon, C., et al.: Electrical analysis of mechanical stress induced by STI in short MOSFETs using externally applied stress. IEEE Trans. Electron. Devices 51, 1254–1261 (2004)CrossRefGoogle Scholar
  91. 91.
    Rinaldi, G., Stiharu, I., Packirisamy, M., Nerguizian, V., Landry, R., Raskin, J.-P.: Dynamic pressure as a measure of gas turbine engine (GTE) performance. Meas. Sci. Technol. (2010). doi: 10.1088/0957-0233/21/4/045201
  92. 92.
    Wee, K.W., et al.: Novel electrical detection of label-free disease marker proteins using piezoresistive self-sensing micro-cantilevers. Biosens. Bioelectron. 20, 1932–1938 (2005)CrossRefGoogle Scholar
  93. 93.
    Lubecke, V.M., Barber, B., Chan, E., Lopez, D., Gross, M.E., Gammel, P.: Self-assembling MEMS variable and fixed RF inductors. IEEE Trans. Microwav. Theory Tech. 49, 2093–2098 (2001)CrossRefGoogle Scholar
  94. 94.
    Dahlmann, G.W., Yeatman, E.M., Young, P., Robertson, I.D., Lucyszyn, S.: Fabrication, RF characteristics and mechanical stability of self-assembled 3D microwave inductors. Sens. Actuators A: Phys. 97–98, 215–220 (2002)CrossRefGoogle Scholar
  95. 95.
    Zou, J., Liu, C., Trainor, D.R., Chen, J., Schutt-Ainé, J.E., Chapman, P.L.: Development of three-dimensional inductors using plastic deformation magnetic assembly (PDMA). IEEE Trans. Microwav. Theory Tech. 51, 1067–1075 (2003)CrossRefGoogle Scholar
  96. 96.
    Nguyen, H.D., Hah, D., Patterson, P.R., Chao, R., Piyawattanametha, W., Lau Erwin, K.: IEEE J. Microelectromech. Syst. 13(3), 406–413 (2004)Google Scholar
  97. 97.
    Sasaki, M., Briand, D., Noell, W., de Rooij, N.F., Hane, K.: Three-dimensional SOI-MEMS constructed by buckled bridges and vertical comb drive actuator. IEEE J. Sel. Top. Quantum Electron. 10, 455–461 (2004)CrossRefGoogle Scholar
  98. 98.
    Freund, L.B., Suresh, S.: Thin film materials. Cambridge University Press, UK (2003)Google Scholar
  99. 99.
    Ohring, M.: Materials science of thin films, deposition and structure. Academic Press, USA (2002)Google Scholar
  100. 100.
    Raskin, J.-P., Iker, F., André, N., Olbrecht, B., Pardoen, T., Flandre, D.: Bulk and surface micromachined MEMS in thin film SOI technology. Electrochim. Acta 52, 2850–2861 (2007)CrossRefGoogle Scholar
  101. 101.
    André, N., Iker, F., Raskin, J.-P.: CMOS compatible 3D MEMS in SOI technology. In: Proceedings of the Third Workshop of the Thematic Network on Silicon on Insulator Technology, Devices and Circuits, EUROSOI’07, Leuven, Belgium, pp. 69–70 (2007)Google Scholar
  102. 102.
    Fan, Z., Chen, J., Bullen, D., Liu, C., Delcmyn, F.: Design and fabrication of artificial lateral line flow sensors. J. Micromech. Microeng. 12, 655–661 (2002)CrossRefGoogle Scholar
  103. 103.
    Chen, J., Liu, C.: Development and characterization of surface micromachined, out-of-plane hot-wire anemometer. IEEE J. Microelectromech. Syst. 12, 979–988 (2003)CrossRefGoogle Scholar
  104. 104.
    Iker, F., Andre, N., Pardoen, T., Raskin, J.-P.: Three-dimensional self-assembled sensors in thin film SOI technology. IEEE J. Microelectromech. Syst. 15, 1687–1697 (2006)CrossRefGoogle Scholar
  105. 105.
    Makinwa, K.A.A., Huijsing, J.H.: A smart wind sensor using thermal sigma-delta modulation techniques. Sens. Actuators A 97–98, 15–20 (2002)Google Scholar
  106. 106.
    Kohl, F., et al.: Development of miniaturized semiconductor flow sensors. Measurement 33, 109–119 (2003)CrossRefGoogle Scholar
  107. 107.
    Fürjes, P., et al.: Thermal characterisation of a direction dependent flow sensor. Sens. Actuators A 115, 417–423Google Scholar
  108. 108.
    Laconte, J., Flandre, D., Raskin, J.-P.: Micromachined Thin-Film Sensors for SOI-CMOS Co-Integration. Springer (2006). ISBN-10 0-387-28842-2Google Scholar
  109. 109.
    André, N., Rue, B., Renaux, C., Flandre, D., Raskin, J.-P.: 3D capacitive MEMS sensors co-integrated with SOI CMOS circuits. In: Proceedings of the Fourth Workshop of the Thematic Network on Silicon on Insulator Technology, Devices and Circuits, EUROSOI’08, Tyndall National Institute, Cork, Ireland, pp. 75–76 (2008)Google Scholar
  110. 110.
    Sobieski, S., André, N., Raskin, J.-P., Francis, L.A.: Temperature effect on Lorentz based magnetometer. Sens. Lett. 7, 456–459 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM)Université catholique de Louvain (UCL)Louvain-la-NeuveBelgium

Personalised recommendations