Advertisement

Low-Temperature Fabrication of Germanium-on-Insulator Using Remote Plasma Activation Bonding and Hydrogen Exfoliation

  • C. A. ColingeEmail author
  • K. Y. Byun
  • I. P. Ferain
  • R. Yu
  • M. Goorsky
Chapter
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

Low-temperature germanium to silicon wafer bonding was demonstrated by in situ radical activation and bonding in vacuum. After low temperature direct bonding of Ge to Si followed by annealing at 200 and 300°C, advanced imaging techniques were used to characterize the bonded interface. The feasibility of transferring hydrogen-implanted germanium to silicon with a reduced thermal budget is also demonstrated. Germanium samples were implanted with hydrogen and a two-step anneal was performed. The first anneal performed at low temperature (≤150°C for 22 h) to enhance the nucleation of hydrogen platelets. The second anneal is performed at 300°C for 5 min and is shown to complete the exfoliation process by triggering the formation of extended platelets.

Keywords

Wafer Bonding Thermal Budget Short Time Anneal Scan Acoustic Microscopy Remote Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Vinet, M., Le Royer, C., Batude, P., Damlencourt, J.F., et al.: Germanium on insulator and new 3D architectures opportunities for integration. Int. J. Nanotechnol. 7, 204 (2010)CrossRefGoogle Scholar
  2. 2.
    Le Royer, C., Damlencourt, J.F., Romanjek, K., Lecunff, Y., et al.: High mobility CMOS: first demonstration of planar GeOI pFETs and SOI nFETs. Proceedings of the sixth workshop of the thematic network on silicon-on-insulator technology, Devices and circuits (EUROSOI) 21 (2010)Google Scholar
  3. 3.
    Kim, M.J., Carpenter, R.W.: Heterogeneous silicon integration by ultra-high vacuum wafer bonding. J. Elec. Materi. 32, 849 (2003)CrossRefGoogle Scholar
  4. 4.
    Tezuka, T., Moriyama, Y., Nakahara, Si., Sugiyama, N., et al.: Lattice relaxation and dislocation generation/annihilation in SiGe-on-insulator layers during Ge condensation process. Thin Solid Films 508, 251 (2006)CrossRefGoogle Scholar
  5. 5.
    Tong, Q., Gan, Q., Hudson, G., Fountain, G., Enquist, P.: Low temperature InP/Si wafer bonding. Appl. Phys. Lett. 84, 732 (2004)CrossRefGoogle Scholar
  6. 6.
    Kanbe, H., Miyaji, M., Ito, T.: Ge/Si heterojunction photodiodes fabricated by low temperature wafer bonding. Appl. Phys. Express 1, 072301 (2008)CrossRefGoogle Scholar
  7. 7.
    Chen, L., Dong, P., Lipson, M.: High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding. Opt. Express 16, 11513 (2008)CrossRefGoogle Scholar
  8. 8.
    Byun, K., Ferain, I., Colinge, C.: Effect of free radical activation for low temperature Si to Si wafer bonding. J. Electrochem. Soc. 157, H109 (2010)CrossRefGoogle Scholar
  9. 9.
    Pelissier, B., Kambara, H., Godot, E., Veran, E., Loup, V., Joubert, O.: XPS analysis with an ultra clean vacuum substrate carrier for oxidation and airborne molecular contamination prevention. Microelectron. Eng. 85, 155 (2008)Google Scholar
  10. 10.
    Tabet, N., Faiz, M., Hamdan, N.M., Hussain, Z.: High resolution XPS study of oxide layers grown on Ge substrates. Surf. Sci. 523, 68 (2003)CrossRefGoogle Scholar
  11. 11.
    Molle, A., Bhuiyan, M.N.K., Tallarida, G., Fanciulli, M.: In situ chemical and structural investigations of the oxidation of Ge(001) substrates by atomic oxygen. Appl. Phys. Lett. 89, 083504 (2006)CrossRefGoogle Scholar
  12. 12.
    Signamarcheix, T., Allibert, F., Letertre, F., Chevolleau, T., et al.: Germanium oxynitride (GeOxNy) as a back interface passivation layer for Germanium-on-insulator substrates. Appl. Phys. Lett. 93, 022109 (2008)CrossRefGoogle Scholar
  13. 13.
    Ma, X., Chen, C., Liu, W., Liu, X., et al.: Study of the Ge wafer surface hydrophilicity after low-temperature plasma activation. J. Electrochem. Soc. 156, H307 (2009)CrossRefGoogle Scholar
  14. 14.
    Vincent, S., Radu, I., Landru, D., Leterte, F., Rieutord, F.: A model of interface defect formation in silicon wafer bonding. Appl. Phys. Lett. 94, 101914 (2009)CrossRefGoogle Scholar
  15. 15.
    Baine, P., Gamble, H., Armstrong, B., Mitchell, S., McNeill, D., Rainey, P., Low, Y., Bain, M.: Germanium bonding to Al2O3. ECS Trans. 16–8, 407 (2008)CrossRefGoogle Scholar
  16. 16.
    Komanduri, R., Chandrasekaran, N., Raff, L.: Molecular dynamic simulations of uniaxial tension at nanoscale of semiconductor materials for micro-electro-mechanical systems (MEMS) applications. Mater. Sci. Eng. A 340, 58 (2003)CrossRefGoogle Scholar
  17. 17.
    Bruel, M.: Silicon on insulator material technology. IEEE Electron Device Lett. 31, 1201 (1995)Google Scholar
  18. 18.
    Tong, Q.Y., Gutjahr, K., Hopfe, S., Gösele, U.: Layer splitting process in hydrogen-implanted Si, Ge, SiC, and diamond substrates. Appl. Phys. Lett. 70, 1390 (1997)CrossRefGoogle Scholar
  19. 19.
    David, M.L., Pailloux, F., Babonneau, D., Drouet, M., et al.: The effect of the substrate temperature on extended defects created by hydrogen implantation in Germanium. J. Appl. Phys. 102, 096101 (2007)CrossRefGoogle Scholar
  20. 20.
    Zahler, J.M., Fontcuberta, A., Morral, I., Griggs, M.J., Atwater, H.A., Chabal, Y.J.: Role of hydrogen in hydrogen-induced layer exfoliation of Germanium. Phys. Rev. B 75, 035309 (2007)CrossRefGoogle Scholar
  21. 21.
    Hayashi, S., Goorsky, M., Noori, A., Bruno, D.: Materials issues for the heterogeneous integration of III-V compounds. J. Electrochem. Soc. 153, G1011 (2006)CrossRefGoogle Scholar
  22. 22.
    Yu, C.Y., Lee, C.Y., CLin, C.H., Liu, C.W.: Low-temperature fabrication and characterization of Ge-on-insulator structures. Appl. Phys. Lett. 89, 101913 (2006)CrossRefGoogle Scholar
  23. 23.
    Hurley, R.E., Wadsworth, H., Montgomery, J.H., Gamble, H.S.: Surface blistering of low temperature annealed hydrogen and helium co-implanted germanium and its application to splitting of bonded wafer substrates. Vacuum 83, S29 (2009)CrossRefGoogle Scholar
  24. 24.
    Hayashi, S., Bruno, D., Goorsky, M.S.: Temperature dependence of hydrogen-induced exfoliation of InP. Appl. Phys. Lett. 85, 236 (2004)CrossRefGoogle Scholar
  25. 25.
    Hayashi, S., Noori, A.M., Sandhu, R., Cavus Gutierrez, A., Aitken, A., Goorsky, M.S.: InAs on insulator by hydrogen implantation and exfoliation. ECS Trans. 3–6, 129 (2006)CrossRefGoogle Scholar
  26. 26.
    Christensen, D.H., Hill, J.R., Hickernell, R.K., Matney, K., Goorsky, M.S.: Evaluating epitaxial growth stability. Mater. Sci. Eng. B 44, 113 (1997)CrossRefGoogle Scholar
  27. 27.
    Miclaus, C., Goorsky, M.S.: Strain evolution in hydrogen-implanted silicon. J. Phys. D 36, A177 (2003)CrossRefGoogle Scholar
  28. 28.
    Fournel, F., Moriceau, H., Beneyton, R.: Low temperature void free hydrophilic or hydrophobic silicon direct bonding. ECS Trans. 36, 139 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • C. A. Colinge
    • 1
    Email author
  • K. Y. Byun
    • 1
  • I. P. Ferain
    • 1
  • R. Yu
    • 1
  • M. Goorsky
    • 2
  1. 1.Tyndall National InstituteUniversity College CorkCorkRepublic of Ireland
  2. 2.Department of Material Science and EngineeringUCLALos AngelesUSA

Personalised recommendations