Special Features of the Back-Gate Effects in Ultra-Thin Body SOI MOSFETs

  • T. RudenkoEmail author
  • V. Kilchytska
  • J.-P. Raskin
  • A. Nazarov
  • D. Flandre
Part of the Engineering Materials book series (ENG.MAT.)


Ultra-thin body silicon-on-insulator (SOI) MOSFET is considered to be a strong candidate for ultimate scaling of CMOS technologies, because of its excellent suppression of the short-channel effects, even without the use of channel doping. Apart from undoped ultra-thin silicon body, nowadays SOI MOSFETs also feature ultra-thin gate high-k gate dielectrics and thin buried oxides. These innovating features bring about special electrical properties. In this work, we describe some of these properties revealed via the back-gate effects, including special behaviors of interface coupling, transport properties and gate tunneling currents, which may be beneficial for the back-gate control schemes.



This work has been partly funded by the European Commission under the frame of the Network of Excellence “NANOSIL” (Silicon-based Nanostructures and Nanodevices, No. 216171) and “EuroSOI+”. The devices have been fabricated within the frame of SOITEC/LETI Nanosmart research program and authors thank CEA-LETI and SOITEC for their support.


  1. 1.
    Omura, Y., Nakashima, S., Izumu, K., Ishii, T.: 0.1-μm-gate, ultrathin-film CMOS devices using SIMOX substrate with 80-nm thick buried oxide layer. IEDM Technical Digest, pp. 675–678 (1991)Google Scholar
  2. 2.
    Su, L., Jacobs, J., Chung, J., Antoniadis, D.: Deep-submicrometer channel design in silicon-on-insulator (SOI) MOSFET’s. IEEE Electron Dev Lett 15, 183–185 (1994)CrossRefGoogle Scholar
  3. 3.
    Suzuki, S., Ishii, K., Kanemaru, S., Maeda, T., Tsutsumi, T., Sekiwaga, T., Nagai, K., Hiroshima, H.: Highly suppressed short-channel effects in ultrathin SOI n-MOSFETs. IEEE Trans Electron Dev 47, 354–359 (2000)CrossRefGoogle Scholar
  4. 4.
    Wong, H.-S.P., Frank, D.J., Solomon, P.M.: Device design considerations for double-gate, ground-plane, and single-gated ultra-thin SOI MOSFET’s at the 25 nm channel length generation. IEDM Technical Digest, pp. 407–410 (1998)Google Scholar
  5. 5.
    Ernst, T., Munteanu, D., Cristoloveanu, S., Quisse, T., Hefyene, N., Horiguchi, S., Ono, Y., Takahashi, Y., Murase, K.: Ultimately thin SOI MOSFETs: special characteristics and mechanisms. Proceedings of IEEE International Conference, pp. 92–93 (1999)Google Scholar
  6. 6.
    Weber, Q., Faynot, O., Andrieu, F., Buj-Dufournet, C., et al.: High immunity to threshold voltage variability in undoped ultra-thin FD SOI MOSFETs and its physical understanding. IEDM Technical Digest, pp. 245–248 (2008)Google Scholar
  7. 7.
    Pretet, S., Ohata, A., Dieudonne, F., Alliber, F., Bresson, N., Matsumoto, T., et al.: Scaling issues for advanced SOI devices: gate oxide tunnelling, thin buried oxide, and ultra-thin films. The Electrochemical Society Proceedings 2003-02, pp. 476–487 (2003)Google Scholar
  8. 8.
    Eminente, S., Cristoloveanu, S., Clerc, R., Ohata, A., Ghibaudo, G.: Ultra-thin fully-depleted SOI MOSFETs: special charge properties and coupling effects. Sol State Electron 51, 239–244 (2007)CrossRefGoogle Scholar
  9. 9.
    Ohata, A., Cristoloveanu, S., Vandooren, A., Cassé, M., Daugé, F.: Coupling effect between the front and back interfaces in thin SOI MOSFETs. Microelectron. Eng. 80, 245–248 (2005)CrossRefGoogle Scholar
  10. 10.
    Tsuchiya, R., Horiuchi, M., Kimura, S., Yamaoka, M., Kawahara, T., Maegawa, S., Iposhi, T., Ohji, Y., Matsuoka, H.: Silicon on thin BOX: A new paradigm of the MOSFET for low-power and high-performance applications featuring wide-range back-bias control. IEDM Technical Digest, pp. 631–634 (2004)Google Scholar
  11. 11.
    Yang, I.J., Vieri, K., Chandrakasan, A., Antoniadis, D.A.: Back gated CMOS on SOIAS for dynamic threshold voltage control. IEDM Technical Digest, pp. 877–879 (1995) Google Scholar
  12. 12.
    Hiramoto, T.: Low power and low voltage MOSFETs with variable threshold voltage controlled by back-bias. IEICE Transactions on Electronics E83-C, pp. 161–169 (2000)Google Scholar
  13. 13.
    Andrieu, F., Faynot, O., Garros, X., Lafond, C., et al.: Comparative scalability of PVD and CVD TiN on HfO2 as a metal gate stack for FDSOI cMOSFETs down to 25 nm gate length and width. IEDM Technical Digest, pp. 641–644 (2006)Google Scholar
  14. 14.
    Colinge, J.P.: Silicon-on-insulator technology: materials to VLSI, 3rd edn. Kluwer, Boston (2004)Google Scholar
  15. 15.
    Lim, H.K., Fossum, J.G.: Threshold voltage of thin-film silicon-on-insulator (SOI) MOSFETs. IEEE Trans. Electron. Dev. 30, 1244–1251 (1983)CrossRefGoogle Scholar
  16. 16.
    Cristoloveanu, S., Li, S.: Electrical Characterization of Silicon-On-Insulator Materials and Devices. Kluwer, New York (1995)Google Scholar
  17. 17.
    Poiroux, T., Widiez, J., Lolivier, J., Vinet, M., Cassé, M., Prévitali, B., Deleonibus, S.: New and accurate method for electrical extraction of silicon film thickness on fully-depleted SOI and double-gate transistors. IEEE Int SOI Conf Proc, pp. 73–74 (2004)Google Scholar
  18. 18.
    Schred Simulation Tool: (2010)
  19. 19.
    Park, C.-K., Lee, C.-Y., Lee, K., Moon, B.Y., Byun, Y.H., Shur, M.: A unified current-voltage model for long-channel MOSFETs. IEEE Trans. Electron. Dev. 38, 399–406 (1991)CrossRefGoogle Scholar
  20. 20.
    Rudenko, T., Kilchytska, V., Burignat, S., Raskin, J.P., Andrieu, F., Faynot, O., Tiec, Y., Landry, K., Nazarov, A., Lysenko, V.S., Flandre, D.: Experimental study of transconductance and mobility behaviors in ultra-thin SOI MOSFETs with standard and thin buried oxides. Solid State Electron. 54, 164–170 (2010)CrossRefGoogle Scholar
  21. 21.
    Wong, H.-S., White, M.H., Krutsick, T.J., Booth, R.V.: Modeling of transconductance degradation and extraction of threshold voltage in thin oxide MOSFETs. Solid State Electron. 30, 953–968 (1987)CrossRefGoogle Scholar
  22. 22.
    Omura, Y., Horiguchi, S., Tabe, M., Kishi, K.: Quantum-mechanical effects on the threshold voltage of ultrathin-SOI n MOSFETs. IEEE Electron. Dev. Lett. 14, 569–571 (1993)CrossRefGoogle Scholar
  23. 23.
    Uchida, K., Koga, J., Ohba, R., Numata, T., Takagi, S.I.: Experimental evidences of quantum-mechanical effects on low field mobility, gate-channel capacitance, and threshold voltage of ultrathin body SOI MOSFETs. IEDM Technical Digest, pp. 29.4.1–29.4.4 (2001)Google Scholar
  24. 24.
    Esseni, D., Mastrapasqua, M., Celler, G.K., Fiegna, C., Selmi, L., Sangiorgi, E.: Low field electron and hole mobility of SOI transistors fabricated on ultrathin silicon films for deep submicrometer technology application. IEEE Trans. Electron. Dev. 48, 2842–2850 (2001)CrossRefGoogle Scholar
  25. 25.
    Uchida, K., Watanabe, H., Kinoshita, A., Koga, J., Numata, T., Takagi, S.: Experimental study on carrier transport mechanism in ultrathin-body SOI n- and p-MOSFETs with thickness less than 5 nm. IEDM Technical Digest, pp. 47–50 (2002)Google Scholar
  26. 26.
    Esseni, D., Mastrapasqua, M., Celler, G.K., Fiegna, C., Selmi, L., Sangiorgi, E.: An experimental study of mobility enhancement in ultrathin SOI transistors operated in double-gate mode. IEEE Trans. Electron. Dev. 50, 802–807 (2003)CrossRefGoogle Scholar
  27. 27.
    Uchida, K., Koga, J., Takagi, S.: Experimental study on carrier transport mechanisms in double-gate and single-gate ultrathin-body MOSFETs—Coulomb scattering, volume inversion, and δTSOI-induced scattering. IEDM Technical Digest, pp. 805–808 (2003)Google Scholar
  28. 28.
    Ohata, A., Cristoloveanu, S., Cassé, M.: Mobility comparison between front and back channels in ultra-thin silicon-on-insulator transistors by the front-gate split capacitance-voltage method. Appl. Phys. Lett. 89, 032104 (2006)CrossRefGoogle Scholar
  29. 29.
    Ohata, A., Cassé, M., Cristoloveanu, S.: Front- and back-channel mobility in ultrathin SOI-MOSFETs by front-gate split CV method. Solid State Electron. 51, 245–251 (2007)CrossRefGoogle Scholar
  30. 30.
    Majkusiak, B., Badri, M.H.: Semiconductor thickness and back-gate voltage effects on the gate tunneling current in the MOS/SOI system with ultrathin oxide. Trans. Electron. Dev. 47, 2347–2351 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • T. Rudenko
    • 1
    Email author
  • V. Kilchytska
    • 2
  • J.-P. Raskin
    • 2
  • A. Nazarov
    • 1
  • D. Flandre
    • 2
  1. 1.Institute of Semiconductor Physics, NAS of UkraineKievUkraine
  2. 2.Université catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations